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ABSTRACT
Touch accuracy is not just dependent on the performance
of the touch sensor itself. Instead, aspects like phone grip
or occlusion of the screen have been shown to also have
an influence on accuracy. Yet, these are all dependent on
one underlying factor: the size and proportions of the user’s
hand. To better understand touch input, we investigate how
11 hand features influence accuracy. We find that thumb
length in particular correlates significantly with touch ac-
curacy and accounts for about 12 % of touch error variance.
Furthermore, we show that measures of some higher level
interactions also correlate with hand size.
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Figure 1: We investigate how touch error varies between
users with different hand sizes. Seen here are a user with a
large hand (left) and a smaller hand (right) holding the same
phone. We find that thumb length in particular correlates
significantly with touch error.

1 INTRODUCTION
Touch input is the dominant input method for many mobile
devices, such as phones and smartwatches. As screen space
on such devices is limited, the accuracy and fidelity of touch
is an important consideration during design of touch-based
user interfaces. Inaccuracies of touch impose restrictions on
user interface design, such as necessitating larger controls.

A range of methods have been proposed to improve touch
accuracy. For example, specifically-designed interaction tech-
niques can help alleviate some issues of insufficient sensing
precision [2]. But touch input itself can be made more ac-
curate by modeling its inaccuracies. An example is work by
Weir et al. [27] on using Gaussian process models to train
offset functions for improved touch input. These models are
generally data-driven and, while being able to improve touch
accuracy, do not tell us much about where this error comes
from in the first place. Furthermore, there likely are multiple
factors that influence this error, yet which these are and how
much they contribute to the overall error is also unclear.
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Several factors influencing touch accuracy have been pre-
viously explored. For example, Holz and Baudisch have pro-
posed that visual features on top of the touching finger deter-
mine the desired touch location [13]. Whether a target is in
easy reach of the thumb [3], whether the thumb is curled or
straight [22], as well as whether a user is multitasking [20]
have all been shown to impact touch performance. An under-
lying factor in many cases is the user’s grip—how the phone
is held. Additionally, the dimensions of the user’s hand (an-
thropometrics) are directly related to many of the factors
above. For example, a larger hand necessitates a different
grip than a smaller one (see Figure 1).
Some anthropometric factors have already been investi-

gated. For instance: the effects of thumb length and breadth
on touch input [17]; negative effects of larger thumb pad sizes
on touch precision [2]; and the correlation between hand
size and touch performance [24]. However, these works have
focused on a particular task such as typing, a particular area
of the screen, or a subset of hand measures. Thus, we still
lack an overview of which measures most strongly correlate
with touch accuracy across a touch screen.

We extend previous work by including a large number of
hand features, covering measures of hand and finger size.
We examine the effects of those measures on touch accuracy
over the entire screen of one smaller and one larger phone.
Furthermore, we explore how one anthropometric measure—
thumb size—correlates with five common touch interactions:
swiping, scrolling, panning, typing, and selecting.
We find that thumb length in particular significantly de-

creases touch accuracy and overall accounts for about 12 %
of the variance of touch error. Our findings show, however,
that while thumb length accounts for a significant share of
the error, individual differences in touch dominate. Hence,
touch offset models trained on users with similarly sized
thumbs are outperformed by per-user models.

2 RELATEDWORK
We first review work on ways of improving touch input by
either correcting for touch offsets or adapting target lay-
outs. These techniques require models of touch performance,
touch characteristics, or anatomical features of the hand,
which we review as well. Finally, we discuss how knowledge
of hand anatomy has been used for improving touch input.

Improving Touch Input
Touch input performance can be improved by sensor design,
applying data or models of offsets on touch points, or by
adapting touch target designs.

Sensors, likeMicrochip’s MXT336U digitizer, allow for cali-
bration to correct for background capacitance that could lead
to distorted touch locations. However, such sensor correc-
tions do not account for variation in touch accuracy induced

by differences in grip or hand anatomy. For such user char-
acteristics, software models (e.g., offset models) are needed
to correct for individual differences.

As a finger usually covers more than one pixel of a touch-
screen, this ambiguity needs to be resolved, for example, by
picking the center of the touch ellipse as the touch location.
Yet, this touch location does not necessarily align with where
the user intended to touch [13]. This results in touch offsets
(i.e., error), which can be corrected for if known and system-
atic. For example, Holz and Baudisch [12] showed that touch
accuracy can be improved using fingerprint information.
Improving touch accuracy is simple once the offsets are

modeled. However, fitting a good model to various users and
use cases is challenging. Users’ hands vary anatomically, and
mobile devices can be grasped in many ways, with one or
two hands, and with different hand postures and locations
on a device. One way of using offsets is to predict those
by applying machine learning to train offset models from
raw touch data. For example, Weir et al. [27] used Gauss-
ian processes to train user-specific touch offset models, and
Mott and Wobbrock [19] combined user-independent and
user-dependent offset models to compensate for motor and
situational impairments. For each screen location such mod-
els can predict the most likely offset to apply to a touch event.
Buschek et al. [5] also presented theTouchML toolkit to train
such offset models.

The offset points can vary dramatically across a screen sur-
face, particularly for single-handed input. The approaching
angle of the thumb influences the touch profile on the screen
because a slightly different part of the thumb pad touches
the screen depending on the angle. For example, Roudaut
et al. described how the slope of a touch surface influences
touch accuracy [25].
In addition to offsets models, touch accuracy can be im-

proved by compensating inaccuracies with touch target de-
sign. One approach is to adjust target sizes. When holding
a phone and interacting with the same hand, touch input is
often given with the thumb. Parhi et al. [21] modeled how
large targets should be for accurate one-handed thumb input.
Another approach is to adjust how the targets are laid out
across the screen. For example, Karlson et al. [16] showed
preferred regions for one-handed device use for four different
device sizes, and Park and Han also investigated how target
size and location influenced touch error [22, 23]. Trudeau
et al. [26] further suggested that interface elements should
be presented near the thumb’s resting position instead of
close to the limits of the functional area. And Goel et al. [9]
demonstrated that phone grip can be inferred from device
sensors, contributing to enabling adaptive layouts based on
grip. However, like with offsets, understanding of users hand
characteristics is a prerequisite for improving touch perfor-
mance with target design.
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The Thumb’s Influence on Touch Performance
Unimanual touch performance is influenced by a complex
interplay of user characteristics. For example, hand and fin-
ger size constrain the potential grip on the device, which in
turn determines which parts of the screen are reachable.

Previouswork has describedmany effects ofmotion-related
factors on touch input with thumb. For example, Azenkot and
Zhai [1] showed how text entry behavior changes as users
switch hand postures, Bergstrom-Lehtovirta andOulasvirta [3]
modeled the reachable area on the screen for thumb, and
Trudeau et al. [26] investigated a tapping task with a 12-key
grid, showing that location significantly affects the user’s
grip in terms of joint positions in relation to the mobile
device.

None of these studies, however, described the influence of
thumb motion on touch accuracy. Accuracy is examined by
Bergstrom-Lehtovirta et al. [4] and Goel et al. [8], but only
as an indirect effect on hand movement through walking.

Hand Anthropometrics
Touch accuracy is influenced by hand measures (e.g., fin-
ger lengths, finger pad sizes) and movement (e.g., the grip,
fingers’ ranges of motion). Hand measures influence how
far the thumb can reach, and longer fingers with a similar
range of motion reach further and wider. Therefore, the hand
measures are in the root of touch performance. However,
the influence of hand measures on touch accuracy has been
examined only in subsets of measures or tasks previously.
Beyond studies that report some hand measures (e.g., [3,

21]), two studies using those in analyzing accuracy are worth
mentioning here. One is by Kim et al., who investigated the
influence of thumb length and breadth on touch input [17].
They used three different target grids (respectively three
different target sizes), shown at the bottom of a phone, and
measured task completion time as well as the number of
errors. Participants with longer thumbs took more time, but
there was no significant influence on the number of errors.
We extend this work by measuring touch accuracy over the
entire screen instead of selection errors in discrete grids on
the lower screen.
Another recent study is by Prange et al., in which they

explored correlations of four hand dimensions (total span,
hand length, hand width, and zooming span) with several
measures of touch interaction performance [24]. Their par-
ticipants swiped, tapped, scrolled, and zoomed in a phone
application. Prange et al. concentrated on correlations of
hand size with interaction measures. In addition the hand
size, we also cover measures of the fingers that have been
suggested to influence touch (e.g., finger span [3], thumb pad
[17], and thumb length [26]).

We find that thumb length has the greatest overall influ-
ence on touch and consequently use it in our investigation
of interaction measure correlations. We also cover multiple
tasks with an exploration of common touch input types.

3 DATA COLLECTION
Investigating whether hand size has an influence on touch
performance requires a large amount of data. We hence col-
lected touch data from participants with a wide range of
hand sizes. The data collection was mainly focused on target
acquisition, but also included higher level touch interactions.
With this dataset we look for correlations between hand
features and measures of touch performance.

Design
The data collection was split in two phases. Phase 1 consisted
of tapping 1000 cross-hair targets which were presented sub-
sequently at randomized locations across the entire screen.
Phase 2 consisted of five interaction tasks with 10 repeti-
tions each: swiping, scrolling, panning, typing, and selection.
To allow for some familiarization, participants were always
presented with one of each task type in the first round. Af-
terwards, participants went through a fully randomized se-
quence of another 9 repetitions of each task type. Parameters
for each task were also chosen randomly. The participants
completed the process on two different phones, and phone
order was counterbalanced. We asked participants to hold
the phone in their dominant hand and use only that hand’s
thumb for input. Participants were seated in a quiet room
during the whole study.

Participants
We recruited 27 participants (16 male, 10 female, 1 transman;
age 19–68, M=29.0, SD=9.4) from around our institution. All
participants owned a touch-enabled phone. The majority (23)
of the participants were right-handed, four were left-handed.
We mirrored left-handed participants’ data and thus did not
control for handedness.
From each participant we collected a set of hand mea-

sures (see Figure 2), following a consistent procedure that
controlled hand posture. The measures were: (1) thumb pad
width (which may as such influence touch size [13]), (2) index
finger length from the base of the thumb (which influences
thumb reach), (3) finger span between the thumb and the
index finger (which also influences thumb reach [3] and the
aiming angle of the thumb), (4) finger span between the
thumb and the little finger and (5) palm width (both of which
influence the breadth of the grip and thus may influence
phone’s vertical stability), (6) palm length, (which influences
the length of the grip and thus may influence horizontal sta-
bility), and (7–11) the lengths of each of the five fingers. See
Table 1 for an overview of ranges of the different measures.
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Figure 2: We collected 11 measures of each participant’s
hand: the lengths of all fingers down to the base, the dis-
tance between the tip of the index finger and the base of the
thumb, the width and length of the palm, the width of the
thumb pad, and the spans between the thumb and the index
and pinky fingers.

To confirm that our set of participants is representative,
we compared their hands with reported hand measurements
from the literature. Specifically, we used reported hand an-
thropometry of US army personnel (1003 females and 1304
males) [11], Koreans (154 females and 167 males) [15], and
people fromWesternAustralia (110 females and 91males) [14].
We compared the length of the thumb and index finger and
checked males and females separately. To check whether
our sample differs from the reported means, we ran two-
sided one-sample t-tests (Bonferroni corrected). The only
significant difference we found is that our male participants’
thumbs and index fingers were significantly larger than those
of male Koreans. While our results thus likely generalize to
Western populations, further studies might be required for
populations with different average hand sizes.

We also calculated correlations between our participants’
features using Pearson’s correlation coefficients. As shown in
Figure 3, most pairs of features are highly correlated. This is

Table 1: We measured the length of 11 hand features
of our participants.

Feature name Range Mean Std-dev

Thumb length (TL) 5.4–7.8 cm 6.5 cm 0.5 cm
Index finger length (IL) 6.4–8.5 cm 7.3 cm 0.6 cm
Middle finger length (ML) 7.1–9.2 cm 8.0 cm 0.6 cm
Ring finger length (RL) 6.5–8.5 cm 7.4 cm 0.6 cm
Pinky finger length (PL) 5.2–7.4 cm 6.1 cm 0.5 cm
Thumb pad width (TPW) 1.4–2.7 cm 2.0 cm 0.3 cm
Palm width (PaW) 7.3–10.2 cm 8.5 cm 0.8 cm
Palm length (PaL) 9.0–12.0 cm 10.7 cm 0.8 cm
Index tip to thumb base (ITL) 8.5–13.8 cm 11.1 cm 1.2 cm
Thumb to index span (TIS) 9.0–18.8 cm 11.9 cm 2.1 cm
Thumb to pinky span (TPS) 14.1–23.8 cm 18.3 cm 2.5 cm
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Figure 3: Pearson’s correlation coefficients and significance
levels for all pairs of hand features. Except for two pairs, all
features are significantly correlated.

not surprising, as hand features usually remain proportional
over the range of hand sizes. Yet, there remains variability
and while the highest correlation was 0.96 (lengths of middle
and ring fingers) the mean correlation was 0.64. Hence, it is
important to examine the hand features separately, instead
of an aggregate “hand size” measure.

Apparatus
We used two different phones for the evaluation: an iPhone 6
and a Nexus 6P. While the former is 13.8 × 6.7 × 0.7 cm
small (5.7 in screen diagonal), the latter measures 15.9 ×

7.8 × 0.7 cm (4.7 in screen diagonal). In the current device
landscape, the Nexus 6P is of average size, while the iPhone 6
is representative of a class of smaller phones.

We developed the study software using the Xamarin plat-
form so that both devices could share most of the code. How-
ever, we used native GUI elements on both Android and iOS.
We also collected touch input data via the native APIs. We
scaled targets and UI elements to be of equal physical size
on both phones. The application ran in fullscreen mode.

Phase 1: Touch Accuracy
In Phase 1 we collected speed and accuracy data to determine
how anthropometric hand features influence touch accuracy
across the screen estate. The task was to use the thumb to tap
1 cm large crosshair targets (see Figure 4) appearing on the
screen. The participants were instructed to tap the targets as
accurately and as fast as possible. In total, Phase 1 consisted
of tapping 1000 targets. The targets appeared immediately
after the previous one was tapped, and the target locations
were randomized across the entire screen.
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Figure 4: Screenshots of the Android study interface. The leftmost screen shows phase 1’s touch accuracy task. The other five
show screens from phase 2’s: swiping task, scrolling task, panning task, typing task, and selection task.

Phase 2: Recording Touch Patterns
In Phase 2 we collected touch pattern data to explore poten-
tial relationships of anthropometrics to higher level interac-
tions. We collected data in five types of tasks representing
common interactions with mobile phones (see Figure 4). In
addition to the touch data, we also logged device motion
data (such as accelerometer readings).

Swiping. In this task, participants needed to swipe left or
right. This is equivalent to interactions like moving to the
next picture, or liking someone in a dating app. The target
direction was shown in the middle of the screen. Participants
could freely choose the gesture location.

Scrolling. In this task, the participants located an item
in an alphabetical list by scrolling up or down. The list con-
tained 33 vegetables and the initial view was always centered
on the middle. Target items were randomly chosen from the
top/bottom 25% respectively. This represents a common task
with menus and indexed lists, such as a phone’s contact book.
Similar to swiping, but in the vertical axis, this task did not
restrict the gesture’s location.

Panning. In this task, the participants positioned a pin
on a map into a target circle displayed at the middle of the
screen. This represents panning input which is common in
such map applications, as well as when browsing or viewing
large images. The path, the location, and the number of the
panning gestures were not restricted.

Typing. In this task, the participants enteredwords, which
were displayed on the screen. Instead of the native keyboards,
we provided a simple shared keyboard for both phones. Each
trial, we sampled from the 100 most common English words
with 5–7 characters from the Brown Corpus. All words were
uppercased so no case switching was necessary.

Selection. In this task, the participants selected a high-
lighted target in a grid of squares. The squares were laid
out on a 4×5 grid, similar to, for example, a common mobile
phone home menu (e.g., on the iPhone 6). This interaction is
similar to the task in phase 1, but with buttons in a familiar
layout instead of crosshair targets.

Post-Processing
Overall, we captured 54000 touches in the first phase and
2700 interactions in the second phase. We first mirrored all
data from left handed participants along the x-axis. This
allows for a unified further analysis and all figures show
the data for right-handed use. All touch data was trans-
formed from device-dependent pixel coordinates to device-
independent measurements in millimeters.
We further processed the touch data from phase 1 to

remove outliers, based on timing and error. If touches oc-
curred faster than normal reaction times, we removed those.
This drops 298 trials with reaction times below 160ms1,
which make up 1.6 % of our data. We also removed trials
that took much longer than average (indicating participants
were likely distracted during the trial), removing 77 trials
that took more than 2.9 s (i.e., 5 standard deviations above
the mean), which equals another 0.4 % of the data. Finally, we
removed trials where the touch error (measured in device-
independent millimeters) is much larger than average. Over
both phones and all trials, the average error was 4.0mmwith
a standard deviation of 8.1mm. We remove all trials where
the error is exceeding 3 standard deviations above the mean
(i.e., touches off more than 28.7mm). These were another
213 trials (1.2 % of the data), and resulted in a total number
of 3.2 % of the trials being outliers.
We keep all but participant 4 and 5’s trials from phase 2.

These two participants erroneously used their other hand
in that phase, instead of performing the interactions with
the thumb. Furthermore, due to technical issues, participants
2 and 3 only completed some of the trials in phase 2.

4 THE INFLUENCE OF HAND ANATOMY ON
TOUCH ACCURACY

We first report on the results for Phase 1: touch performance,
influence of hand features, and error correction based on
such features.

1Outliers per https://www.humanbenchmark.com/tests/reactiontime/statistics5

https://www.humanbenchmark.com/tests/reactiontime/statistics
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Figure 5: Magnitude of touch error after normalizing for
handedness. The error varied over each phone’s screen with
the largest errors occurring away from the center. Error was
larger along the edge opposite the one where the phone was
held. This effect is more pronounced in the larger Nexus 6P.

Overall Touch Performance
Before investigating how hand anatomy influences touch ac-
curacy, we first report on overall touch performance. The av-
erage touch error on the Nexus 6P and iPhone 6 were 3.4mm
and 3.1mm respectively. A paired sample t-test showed a sig-
nificant effect of phone type on touch error: t(26) = 2.65,p <
0.05. Hence, we retained phone as a factor in the subsequent
analyses. The overall average touch error was 3.2mm.

The touch error is not distributed equally over the screens.
As shown in Figure 5, error is lowest in the middle of the
phones and along the right side (i.e., where the phones were
held,). Towards the far corners, error increases—an effect
larger in the Nexus 6P, likely due to the bigger device size.
The direction of the touch error further highlights how users
tended to touch further inwards than the targets along the
corners (see Figure 6). A reason for this effect might be re-
quired reaching motions for those targets and a subsequent
increase in error.

Table 2: Correlation of hand features and touch error.

Hand feature ð Pearson r  Pearson r

Thumb length 0.35 0.39
Index finger length 0.26 0.23
Middle finger length 0.20 0.20
Ring finger length 0.22 0.19
Pinky finger length 0.10 0.08
Thumb pad width 0.19 0.02
Palm width 0.18 0.15
Palm length 0.13 0.09
Index tip to thumb base 0.10 0.11
Thumb to index span 0.16 0.23
Thumb to pinky span 0.15 0.21

Nexus 6P iPhone 6   

Figure 6: Plotting the direction of the touch error shows that
participants tended to touch more inwards than the target’s
location when the target was close to the screens’ extremes.
This hints that the reachingmotion often required for those
targets introduced an additional source of error.

Hand Features’ Impact on Touch Error
The unequal distribution of touch errors suggests that there
may be influences on touch error other than just sensor noise.
For example, the higher error at the extremes could be due
to users having a harder time reaching those locations. Such
reaching would be influenced by finger size, but also the
overall hand size of a user.
Figure 7 shows the relationship between hand features

and touch error for each of the collected hand measurements,
while Table 2 shows the corresponding correlations. Over-
all, the 11 features show a similar influence on error. This
is explained by the generally large correlation of any two
hand feature measurements, as described earlier. Particu-
larly relevant to touch input are the length of the thumb
and the size of the thumb pad. Both show strong correla-
tions with other hand features (e.g., thumb length is most
strongly correlated with the width of the palm; Pearson’s
r (25) = 0.8,p < 0.001). The two themselves are also corre-
lated; Pearson’s r (25) = 0.4,p < 0.05.
Yet, while there is strong correlation of features overall,

there could still be differences in how heavily they each in-
fluence the accuracy of touch. We used a multiple regression
approach to further investigate the influence of individual
features. For this we aggregated the data to per-participant
error averages with their hand features as initial factors to
regress on. In addition to these fixed effects, we added phone
and participant as random effects. To focus on the main
factors influencing touch error, we then performed model
selection using AIC. Table 3 shows the final model features
as well as their coefficients and p-values. The fitted model
explains about a quarter of the variance of touch errors;
multiple R-squared = 0.35, adjusted R-squared value = 0.25.
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Figure 7: Regression plot of the influence of each of the collected hand size measurements on touch error.

These results show that touch error is not just influenced
by any one hand feature. However, the size of the hand does
feature into what results in touch errors. The model also
showed that the length of the thumb is the most influential
feature from our set. Intuitively, this makes sense as thumb
length has a direct impact on what parts of the screen are
reachable. We thus decided to focus on thumb length as an
influence on touch error for the remaining analysis.

To quantify the influence of thumb length on touch error,
we used a second mixed effect model with thumb length
as the only fixed effect and the same random effects as in
the first model. The conditional R_GLMM2 of this model is
0.895 (i.e., 89.5 % of the variance is explained by the model).
However, much of the error is due to the random effects, such
as individual performance. The marginal R_GLMM2 hence
is only 0.122, meaning that about 12.2 % of the variance of
touch error is explained by thumb length.

Table 3: Touch error model with seven features after
model selection. All F-values for F(1, 46).

Hand feature Coefficient F p

Pinky finger length −2.1 SE=0.70 8.65 < 0.01
Palm width −1.0 SE=0.37 7.82 < 0.01
Index tip to thumb base −0.4 SE=0.25 2.50 0.12
Thumb to index span −0.2 SE=0.12 3.89 0.05
Ring finger length 1.0 SE=0.77 1.81 0.18
Thumb length 2.1 SE=0.55 14.44 < 0.001
Index finger length 2.1 SE=0.90 5.37 < 0.05

A Closer Look at the Influence of Thumb Length. As we saw
in Figure 7 and in the analysis above, thumb length overall
positively correlates with error. For example, the average
touch error of the three participants with the shortest thumbs
was only 1.8mm. On the other hand, the average error for the
three participants with the longest thumbs was 3.3mm. Yet,
there remains an influence of individual differences and there
is variation within people with similarly-sized thumbs. For
example, the standard deviation of the two groups mentioned
above is 0.3mm and 0.8mm respectively.
As we saw earlier, error is unevenly distributed over the

phones’ screens. We hypothesize that this is possibly due
to reaching behavior introducing a source of error. If that is
the case, we would expect different thumb sizes to increase
errors only at certain areas of a screen. For example, there
is a part of the screen (the shape of an annulus sector) that
the thumb pad can touch without a need to change finger
posture or grip, simply by rotating the thumb at the base.
On the other hand, a target closer to the corner the phone is
held at requires the thumb to curl up to reach it. Similarly,
targets further away require stretching the thumb and often
a grip change to facilitate that reaching motion.
Figure 8 shows where on the screen thumb length had

the largest influence. For this we compute the slope of the
touch error ∼ thumb length regression over the surface of
the phones. As shown, there is no area where a smaller
thumb resulted in less error. Instead, over much of the phone
surfaces, larger thumbs fared slightly worse. Yet, towards the
lower edge of the phone, larger thumbs resulted in a more
marked increase in touch error.
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Figure 8:We computed local linear regressionmodels to esti-
mate the strength of the relationship between thumb length
and error. For much of each phone’s screen, longer thumbs
only resulted in slight error increases. However, towards the
bottom, longer thumbs resulted in a more pronounced de-
crease in touch accuracy.

Thumb Length Guided Touch Offset Modeling
So far we have only described how error is related to hand
features. However, ideally this information could be used to
decrease that error. A user’s actual touch locations would
then be corrected, based on their hand size. Instead of train-
ing with personal data from each users, models based on
hand size would ideally transfer between users. To investi-
gate whether this is possible, we used an offset modelling
approach, similar to work by Weir et al. [27]. As above, we
focus on whether thumb length information is indeed helpful
for correcting touch errors. We compared personal models
with models trained on all other users’ data and models
trained on data from users with similar thumb lengths.
We used Gaussian process regression to build models of

offsets required to correct for the touch error. In contrast to
simpler linear models, this accounts for the complex change
of touch error over the screen of a phone (as also seen ear-
lier in Figure 6). Our offset models used either just an RBF
kernel (personal models), or a combination of an RBF and
a White kernel (all other models), and were implemented
using GPy [10]. For models trained on data from more than
one user, we used sparse Gaussian process regression.
We used the relative RMSE to evaluate correction per-

formance. For each participant, we compared four different
models: (1) models trained on their own data, (2) models
trained on everybody else’s data, (3) models trained using
data from the two other participants with the most similar
thumb length, and (4) models trained using data from the ten
other participants with the most similar thumb length. For
each of these models, we tested device-specific and device-
independent variants.

General Two similar Ten similar Personal
0

20

40

60

80

100

Re
la

tiv
e 

RM
SE

 (%
)

Ne
xu

s 6
P

iP
ho

ne
 6

Bo
th

Figure 9: We trained offset models using Gaussian process
regression to check how well errors due to differences in
thumb length could be corrected. We found that training
with data from similar users does not provide an improve-
ment. Personalmodels significantly outperformed anymod-
els trained on other’s data. This suggests that, while users
with similar hands have similar overall error, their individ-
ual touch offsets do not share that similarity.

Figure 9 shows how training a personal model yielded the
largest improvement in touch error. We also found that there
is no large difference between device-specific and device-
independent models. Comparing the device-independent
models with paired t-tests and after Holm-Bonferroni correc-
tion, we found significant differences between the personal
model and the general model (p < 0.01). Personal mod-
els also significantly outperformed models trained on two
other similar users (p < 0.001) and ten other similar users
(p < 0.01).

These results show that offset correction is highly per-
sonal. Even when two users have similarly sized thumbs,
that similarity does not extend to their overall touch behav-
ior. Instead, performance of models trained on other users’
data seem to mostly be influenced by the amount of training
data. Training with data from only two users decreased per-
formance over the general model. However, this difference
was not significant; p = 0.07.

5 HOW THUMB LENGTH INFLUENCES
HIGHER-LEVEL TOUCH INTERACTIONS

As we have seen, hand size has an influence on touch error.
However, error is but one measure of touch interaction and
hand size likely also has an influence on other aspects of
touch input. For example, how users perform swipe gestures
could, to some degree, depend on hand size as well. With the
interaction data from the second phase of the data collection,
we ran an exploratory analysis of how higher level interac-
tion concepts are correlated with hand size. We focused on
correlation with thumb length, because it emerged as the
main factor in the preceding analysis.
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Table 4: Correlation of thumb length with a selection
of measures for each performed kind of interaction.
As this is an exploratory analysis we only report cor-
relations, but no p-values.

Interaction Feature ð Pearson r  Pearson r

Swiping left Start X 0.82 0.25
Swiping left Start Y −0.18 −0.30
Swiping left Radius 0.57 0.11
Swiping right Start X −0.80 −0.84
Swiping right Start Y 0.24 0.08
Swiping right Radius 0.08 0.40

Scrolling up Start X −0.35 −0.24
Scrolling up Start Y 0.01 −0.07
Scrolling up Length −0.02 −0.05
Scrolling up # of Swipes −0.15 −0.23
Scrolling down Start X −0.38 −0.49
Scrolling down Start Y 0.04 0.12
Scrolling down Length −0.32 −0.37
Scrolling down # of Swipes 0.05 0.15

Panning Mean X −0.29 −0.33
Panning Mean Y −0.12 −0.12
Panning Clutch X −0.10 −0.23
Panning Clutch Y −0.35 −0.02

Typing Mean IOI 0.09 0.22

Selecting Selection Time −0.04 −0.34
Selecting top row Selection Time 0.12 −0.14
Selecting bottom row Selection Time 0.06 −0.40

For each of the recorded interactionswe collected all touch,
action, and device motion data. While this would allow for
an analysis of a large number of potential correlations, we re-
stricted ourselves to those we deemed likely to be influenced
by thumb length.
When Swiping left or right, users can perform that ges-

ture anywhere on the screen. We expected users with longer
thumbs to start further away from the grasp base. During a
swipe gesture the thumb pivots at the base. A swipe from a
longer thumb would thus form part of an arc with a larger
radius than a swipe with a short thumb.

During the Scrolling task the start location can be freely
chosen. When scrolling up, users likely start at the bottom of
the screen and then drag upwards. Similarly, when scrolling
down, users likely start high on the screen to have space for
dragging downwards. Users with longer thumbs can reach
further than users with shorter thumbs and thus likely start
higher up when scrolling down. The overall length of a swipe
might differ as well. At the same time, users with shorter
thumbs might need a larger number of swipes to scroll the
same amount.

In the Panning task users can use all of the screen for in-
put. Users with longer thumbs might perform their panning
gestures higher up or further away from the grip location.
We hence analyzed the average location of all touches during
panning. Similarly, where on the screen they perform clutch-
ing actions (i.e., ending one swipe before moving the thumb
to the next start location) might differ by thumb length. For
clutching, we only considered the final location of individual
swipes.

DuringTyping, touch targets are close together in an area
at the bottom of the screen. As we have seen earlier, longer
thumbs are disadvantaged around this part of the screen.
Hence, we expected that this would result in increased in-
teronset intervals during typing.
As in typing, when Selecting the targets further away

require more stretching from users with shorter thumbs.
Similarly, targets in the bottom row could be harder to ac-
quire with longer thumbs. These differences might show in
selection times for those targets.
Table 4 shows the observed correlations between thumb

length and the individual measures for each of the two
phones. We considered interactions separately where ap-
propriate (e.g., swiping left or right). The results show strong
variation in correlations. For example, the highest observed
correlation was between thumb length and the horizontal
starting position while swiping right on the iPhone. Surpris-
ingly, correlations often differ in magnitude (and sometimes
even direction) between the two phones. Overall, this sug-
gests that, while there is some connection of thumb length
to measures of interaction, it is a complex one.

6 DISCUSSION
Our analysis has shown that hand size and thumb length
in particular, has a measurable impact on touch input. Just
the influence of thumb length can explain about 12 % of the
variance of touch error. Touch error increases for users with
longer thumbs, but not uniformly over the whole phone and
differently for the two phones. This demonstrates that the
relationship between hand size and touch performance is
complex and other factors modulate its strength.

An example of this is the distribution of touch error over
the screen (e.g., shown in Figure 5). We expected the error
to be largest towards the top left, farthest away from where
the phones were held. However, this is not the distribution
we observed and instead the lower corners are where touch
error was largest. These were also the locations where large
thumbs were most disadvantaged. Initially, we assumed that
long thumbs would make it easier to reach the top of the
phone while not impacting acquisition of lower targets. How-
ever, that was not the case and thus some other factor likely
influenced the touch behavior.

9



MobileHCI ’19, October 1–4, 2019, Taipei, Taiwan Larsen et al.

Figure 10: Two different kinds of phones grips: (1) holding
the phone at the bottom, and (2) resting the middle of the
phone on the fingers. While the former allows easier selec-
tion of lower targets, the latter allows easier selection ofmid-
dle and upper targets.

One factor we observed during the data collection is par-
ticipants’ grip of the phone. Instead of holding the phones
at the base, many participants switched to a grip where the
middle of the phone rests on the fingers (see Figure 10). This
allows for easier reach of the upper part of the phone, but at
the same time makes lower targets harder to acquire. Due to
the large size of current phones, this is likely a coping mech-
anism to avoid larger reaching motions. Yet, this necessitates
a grip shift (e.g., by rotating the fingers slightly) to reach the
lower targets. This grip behavior is a possible explanation
for the observed error distribution.

The influence of a user’s grip of a phone on touch perfor-
mance is well known. Recent examples are work by Eardley
et al. [6, 7] as well as by Lehmann and Kipp [18]. However,
these papers only compared macro-changes in grip and not
smaller grip adjustments such as the grips we observed. Our
results suggest that small grip shifts might also have a notice-
able influence, especially for larger phones and users with
bigger hands. However, we did not control for grip and thus
further studies are necessary to better quantify the inter-
play of grip and hand size on touch accuracy. Yet on the
other hand, controlling for grip might prevent participants
from using the phone in their preferred way, thus harming
ecological validity.

As more information on the user is available, such as hand
size or the current grip, touch input systems should ideally
be able to correct for these factors. However, our results have
shown that this is not trivial in the case of thumb length.
Models trained on similar users yielded no improvement,
while personal models were able to correct for some of the
touch error. One potential explanation for this is that more
data is needed. For example, for most thumb lengths we only
had data from one participant. Furthermore, thumb length
information might need to be augmented with additional
data, such as the current grip or the phone’s orientation, to
have predictive power.

However, the larger issue with correcting for touch error is
that information on the overall error is not sufficient. While
we have shown that touch error increases with thumb length,
the corresponding offset can be in any direction. There are
overall trends (as shown in Figure 6), but individual differ-
ences seem to make applying one user’s offsets to another
infeasible. Yet, this does not mean that knowing about a
user’s hand size is of no benefit to an application. For ex-
ample, buttons could be uniformly scaled to be bigger for
people with larger hands or fit more buttons for people with
smaller hands. The direction of the offset in that case would
not matter.
Finally, while our results show correlations of hand size

with touch error, they do not necessarily imply a causal
relationship between the two. Unfortunately, the nature of
this kind of investigation makes it impossible to only vary
one factor. For example, as hand measures strongly correlate,
participants with longer thumbs will also have larger hands
in general. As more work on touch input occurs we can better
understand how individual factors influence each other and
the resulting touch accuracy. With this work, we contribute
additional data on hand size influences, yet cannot claim
overall causal relationships just based on that.

7 CONCLUSION
We have investigated the influence of hand size on touch
input. Thumb length in particular impacted touch accuracy,
explaining about 12 % of the variance. Furthermore, we have
shown howmeasures of higher level touch interactions, such
as swipes, also correlate with thumb length.
The detected influence of thumb length varies by user,

complicating correction for the touch error. However, our
investigation further adds to the understanding of touch
and what aspects of the technology and the user impact
touch input. While correction for touch errors is currently
mostly done with black box machine learning models, we
hope that in the future a better understanding of why these
errors occur will allow for adaption of touch interfaces on
a more fundamental level. This paper contributes to this
understanding.
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