
MOTION PATTERN RECOGNITION

FOR INTERACTIVE DANCE

by

Henning Pohl

Supervisor: Prof. Dr. Max Mühlhäuser

Reader: Aristotelis Hadjakos

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

TECHNISCHE UNIVERSITÄT DARMSTADT

DARMSTADT, GERMANY

MARCH, 2010

Contents

List of Figures v

Abstract viii

German Abstract ix

Acknowledgements x

Ehrenwörtliche Erklärung xi

Definition of Musical Terms xii

Chapter 1 Introduction 1

1.1 Motion patterns . 2

1.2 Interactive Dance . 3

1.2.1 Interactive Dance in Art 3

1.2.2 Interactive Dance in Video Games 5

1.2.3 Interactive Dance in Clubs 6

1.3 Overview . 11

Chapter 2 Related Work 13

2.1 Sensors for Interactive Dance . 13

2.1.1 Sensing Floors . 13

2.1.2 Sensors in Shoes . 15

2.1.3 Camera-Based Systems . 17

2.1.4 Wearable Sensors . 20

2.1.5 Additional Sensor Options 23

2.2 Recognition Algorithms . 24

2.2.1 Hidden Markov Models 25

2.2.2 Dynamic Time Warping 27

2.2.3 Non-Temporal Feature Classification 28

2.2.4 Algorithms Utilizing Periodic Subspaces 29

ii

Chapter 3 Wearable Sensor System 30

3.1 Requirements . 30

3.1.1 Sensor System Choices . 30

3.2 Hardware . 33

3.2.1 Sensors . 34

3.2.2 Sensor Interface Board . 36

3.2.3 Embedded System . 39

3.2.4 Sensor Placement . 40

3.3 Embedded Software . 41

Chapter 4 Dance Pattern Recognition 43

4.1 Signal Segmentation . 46

4.2 Movement parameters . 47

4.3 Block Similarities . 48

4.3.1 Block Definition . 49

4.3.2 Whole Block Level Similarities 51

4.3.3 Block Sequence Similarities 54

4.4 Classification . 61

Chapter 5 Evaluation 63

5.1 Recording Application . 64

5.1.1 Time Critical Modules . 64

5.1.2 User Interaction . 66

5.1.3 Dance Description Format 68

5.1.4 Recorded Data Exchange Format 71

5.2 Evaluation Application . 72

5.2.1 Test Definition . 72

5.2.2 Identifier Mapping . 74

5.2.3 Output . 77

5.3 Evaluation Setting . 78

5.4 Evaluation Procedure . 79

5.5 Evaluation Issues . 80

iii

Chapter 6 Results 81

6.1 Suitable Dynamic Time Warping Parameters 82

6.2 Two Motion Comparison . 83

6.3 Influence of Feature Choices . 85

6.4 Influence of Sensor Choices . 88

6.5 Influence of Sequence Length . 89

6.6 Comparison of Several Recordings 92

6.7 Comparison of Error Rate by Dance Move 99

6.8 Threshold Choice . 102

Chapter 7 Conclusion & Future Work 103

7.1 Conclusion . 104

7.2 Future Work . 107

7.2.1 Hardware . 107

7.2.2 Algorithm . 108

7.2.3 Evaluation . 109

Bibliography 110

iv

List of Figures

3.1 Sensor Package Internals 33

3.2 Wearable Sensor Package 34

3.3 Sensor Internals . 35

3.4 Sensor Interface Board . 36

3.5 Gumstix Internals . 38

3.6 System overview . 39

3.7 Sensor locations and topography 41

4.1 Dynamic time warping example 55

4.2 Two sequences and their minimum-distance warp path . . 58

4.3 Multi-resolution warp path computation 60

4.4 Successive warp path refinement 60

5.1 Client Software Stack . 64

5.2 Client Software showing a recorded session 66

5.3 Client Software during a recording session 67

5.4 Dance movement sequence used in the evaluation 79

6.1 Comparing cost and error rate of different FastDTW radius

choices. 82

6.2 Comparison of error rate when detecting differences be-

tween side steps with and without arm movement. 83

6.3 Comparison of error rate when detecting differences be-

tween side and rock steps with arm motion. 84

6.4 Comparison of error rate when detecting differences be-

tween side steps with arm motion and with arms up in the

air. 85

6.5 Comparison of different feature choices for use with the

DTW algorithm. 86

6.6 Comparison of different feature choices for use with the

FVC algorithm. 87

v

6.7 Comparison of different combinations of sensor data for

use with the DTW algorithm. 88

6.8 Comparison of different combinations of sensor data for

use with the FVC algorithm. 89

6.9 DTW-based classification results for several subsequences

of sensor data. The width of each bar denotes the data

range being used. 90

6.10 FVC-based classification results for several subsequences of

sensor data. The width of each bar denotes the data range

being used. 91

6.11 Comparing DTW-based classification for multiple participants 93

6.12 Comparing FVC-based classification for multiple partici-

pants - first half of recording 93

6.13 Comparing DTW-based classification results from multiple

participants. Error rate computed using first half of recording. 94

6.14 Comparing FVC-based classification results from multiple

participants. Error rate computed using first half of recording. 94

6.15 Classification errors when using DTW-based classification.

Green blocks show correctly classified blocks, while red

blocks denote erroneous classification. 95

6.16 Classification errors when using FVC-based classification.

Green blocks show correctly classified blocks, while red

blocks denote erroneous classification. 96

6.17 Classification errors when using DTW-based classification

on the first half of each recording. Green blocks show cor-

rectly classified blocks, while red blocks denote erroneous

classification. 97

6.18 Classification errors when using FVC-based classification

on the first half of each recording. Green blocks show cor-

rectly classified blocks, while red blocks denote erroneous

classification. 98

vi

6.19 Comparing error rates by given class for one participant

using DTW-based classification 100

6.20 Comparing error rates by given class for one participant

using FVC-based classification 100

6.21 Comparing multi-participant error rates by given class using

DTW-based classification 101

6.22 Comparing multi-participant error rates by given class using

FVC-based classification 101

6.23 Means of lowest error yielding thresholds per participant . 102

6.24 Means of lowest error yielding thresholds per participant

for first half of each recording 102

vii

Abstract

In this thesis a method to detect patterns in dance movements is described. Such

patterns can be used in the context of interactive dance systems to allow dancers

to influence computational systems with their body movements. These dance

interactions can provide additional information to people shaping an experience

and allow them to incorporate their audience into their performance.

For the detection of motion patterns, two different methods were designed

to detect motion similarity. Using either dynamic time warping or feature vector

comparison, the distance between two given movements can be computed. A

custom threshold clustering algorithm is used for subsequent unsupervised classi-

fication of movements.

For the evaluation of the presented method, a wearable sensor system was

assembled out of available components. Additionally, an evaluation environment

was created for the evaluation process itself. To quantify the accuracy of the

classification, a custom label space mapping was designed to allow comparison

of sequences with disparate label sets.

Based on an evaluation of the system with four participants, this thesis’s

method is shown to be able to distinguish dissimilar movements. The capability

to acceptably classify longer durations of movement activity is shown as well.

viii

German Abstract

Diese Arbeit stellt eine neue Methode vor, die es ermöglicht Muster in Tänzen zu

erkennen. Solche Muster sind im Kontext von interaktiven Tanzsystemen von In-

teresse und erlauben es Tänzern mit ihren Körperbewegungen algorithmische Zei-

chenprozesse zu beeinflussen. Vor allem in offenen Echtzeit-Gestaltungsprozessen

können solche Muster wirken. Sie erlauben es ferner, den Rezipienten einer sol-

chen Arbeit eben jene auch direkt zu beeinflussen.

Es werden zwei verschiedene Verfahren vorgestellt, die in der Lage sind

Ähnlichkeiten von Bewegungen zu erkennen: Dynamic-Time-Warping und der

Vergleich von Merkmalsvektoren. Mit einer Grenzwert-basierten Clusteranalyse

findet dann eine unüberwachte Klassifikation von Bewegungen statt.

Um die beschriebene Methode zu evaluieren, wurde ein tragbares Sensor-

system aus vorhandenen Komponenten zusammengefügt, das die Bewegungen

des Trägers erfassen kann. Des Weiteren wurden mehrere Anwendungen für die

Aufnahme und Verarbeitung dieser Bewegungen implementiert. Da erkannte

und vorgegebene Bewegungen nicht im gleichen Bezeichnerraum koexistieren,

wurde eine Abbildung entworfen, um diese zu vereinen und so einen Vergleich

zu ermöglichen.

Mit Hilfe von vier Testern wurde das System evaluiert. Es zeigte sich, dass die

vorgestellten Algorithmen gut in der Lage sind, Bewegungen zu differenzieren.

Auch bei längeren Aufnahmedauern war noch eine akzeptable Klassifikation

möglich.

ix

Acknowledgements

To Prof. Dr. Max Mühlhäuser, who kindly agreed to supervise this thesis.

To Aristotelis Hadjakos, who provided invaluable guidance and help over the

course of this thesis. This thesis has been greatly inspired by his work and vision.

I sincerely hope that some of this work translates back into something useful for

his doctoral thesis. I also need to thank him for his soldering, assembly debugging

and general electronics skills, without which I would have been completely lost

at times.

To Clemens Voigt for proofreading this thesis on such a tight schedule. He also

volunteered as study participant, for which I am greatly thankful.

To Katharina Teske and Katrin Aldorf for participating in the user study as well.

And finally, to my family for ongoing support and encouragement.

x

Ehrenwörtliche Erklärung

Hiermit erkläre ich, daß ich die vorliegende Arbeit selbständig und ohne Benut-

zung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die

wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schrif-

ten entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen.

Frankfurt am Main, den 24.3.2010
Henning Pohl

xi

Definition of Musical Terms

To help in understanding the upcoming chapters, a short definition of musical

terms used throughout the thesis is given here.

Beat A beat describes the constant dominant pulse of a musical piece. The

notion of the beat itself does not include any hierarchy or ordering. A beat

is merely the basic background on which more complex notions can be

based. Often the tempo of a musical piece is defined as beats-per-minute

(bpm).

Measure Beats can be combined into groups, called measures. For example, a
3/4 measure combines three beats into a group where each beat has a note

value of one fourth (a quarter note).

Meter The meter defines which beats in a measure are to be stressed. Measure

and meter are often used interchangeably. For example, a 4/4 measure

is assumed to have the first note as primary accent and the third note as

secondary accent. However, this does not always need to be the case. The

meter ultimately defines a hierarchy for the beats and is a significant factor

in our perception of structure and tempo.

Rhythm A rhythm denotes the general placement of sounds in time. Thus the

sequence of notes and pauses and their durations make up the rhythm of a

musical piece. Note that this does not refer to any note’s pitch as rhythm is

purely concerned with the alteration of audible and inaudible time spans

(notes and pauses).

xii

Chapter 1

Introduction

In the end, our aim is to examine an ongoing human

effort: the desire to integrate the most basic expres-

sions of the soul with the most complex creations of

the mind.

— Mark Coniglio and Dawn Stoppiello1

The title of this thesis already hints at what is to be expected: some patterns

are to be discovered. Patterns for something called “interactive dance”. This

raises the question of what constitutes interactive dance. A question, that will be

answered later on in this chapter. One might also wonder what patterns are and

what kind of patterns are to be looked for. In general, a pattern is a recurring

event / object / motion / structure or any other aspect perceivable as repetitious.

Searching for patterns thus is an action primarily concerned with the now and the

past, relating current observations to ones already passed, possibly extrapolating

into the future as well. Here, the focus more specifically is on motion patterns,

motion patterns related to dance to be precise. With that direction given, musical

aspects will inevitably play a role as well, due to the tight connection of dance

and music.

In this chapter the two main aspect of the thesis are described in more detail.

1http://www.troikaranch.org

1

http://www.troikaranch.org

Chapter 1 Section 1.1. Motion patterns

1.1 Motion patterns

Motion patterns, in line with the above given definition, are recurring motions. If

asked, most people could probably identify motions satisfying that requirement.

A group of friends e.g., might have their own secret handshake, an identifying

motion of that group. Similarly, a person giving a presentation sometimes might

not be able to control his body language, resulting in repeated anxiety gestures

like fiddling with clothing. While we are constantly in motion, some parts seem to

stand out in a way that reminds us of previous motions. How a repeated motion

is recognized, however, is not an easy question.

There is no singular feature that denotes motion similarity. A similarity over

a given time span is what makes motions appear similar to us. Not all parts

are equally important in determining that similarity though. For example, a

motion pattern will have an introduction, a body and a conclusion. The body will

be spanning the longest amount of time, with the introduction and conclusion

varying in strength and length. This could, for instance, be a circular hand motion.

When performed repeatedly the pattern is readily apparent. But when did it

start? At some point the structure of the hand motion became visible, but the

transition from arbitrary movement to pattern is a smooth one. It is only during

the execution of a movement that we can recognize whether it belongs to a group

of previous ones.

As can be seen, motion patterns are quite fuzzy. When they start, how long

they last and when they end is not perfectly clear and up to some ambiguity.

Also, we do not require a perfect repeat of a motion for a motion pattern. In the

above given circular motion for example, even larger variations would not keep

a human observer from detecting a level of similarity. A system working with

motion patterns thus has to be robust to variations in the data and able to make

an informed decision on the level of similarity needed for a match. Later on in

this thesis, some valid restrictions for dance motions are discussed. Additionally,

algorithms that are able to detect patters are presented as well.

2 of 117

Chapter 1 Section 1.2. Interactive Dance

1.2 Interactive Dance

The term interactive dance also requires an explanation. One could argue that

all dancing is interactive. Certainly all non-solo dances contain interpersonal

interaction. In fact, dancing is inherently connected to a social context. But dance

is not only social, but also musical and interaction could be defined in that context

as well. A dancer is certainly acting according to the music and the music might

also change in response to dancing (e.g., a DJ will adapt his music to the response

he is currently getting from the crowd). In general, interactivity is a feedback

system, where actions and reactions are intertwined and dependent on each other.

For the purpose of this thesis, a more specific notion of interactivity is neces-

sary. An interactive dance shall be a dance that elicits reactions in a computational

system. Basically, dance acts as an input device, similar to a mouse or a keyboard.

For dance to be accessible to a computer, an interpretative process is needed, that

transforms dance movements into semiotic signs (here based on Charles Sanders

Peirce’s definition). In later chapters such transformations are described in detail.

With dance movements being accessible to the computer, they can become

part in any given sign process inside the machine (machine semiosis). How they

are interpreted is dependent on the intended application domain. In this section

three such domains are outlined.

1.2.1 Interactive Dance in Art

Interactive dance, or movement in general, is primarily a part of installations,

performance art and contemporary dance. Often interactive dance is used to give

dancers a certain level of control over the music playing or the stage lighting. In

other instances, interactive dance is used in generative art where it is used, for

example, to control a visualization or the audio output. Using dance and move-

ments as input to an art piece can be seen as making the body an extension of a

physical object. Thus, aspects of mechanization in art certainly play a role here,

with human motions and expressions being reduced to signals in an algorithmic

process. Another recurring artistic theme is the feedback loop, where e.g., actions

influence the visuals which in turn influence the actions being performed. The

3 of 117

Chapter 1 Section 1.2. Interactive Dance

piece of art becomes transitive and in its complete form only exists in presence of

the interacting person.

An example for the usage of interactive dance is the Digital Dance Project,

by the Danish Institute of Electroacoustic Music (DIEM). Here, a system was

developed to track body features of dancers. Movement Study and Sisters are two

pieces, that use that capability to influence the music playing [58]. In Sisters,

for instance, two dancers represent two opposing sides of the artist (henve also

incorporating above mentioned notions of the body as a machine) and are able

to control sound playback and filters.

One artist, who has been working with interactive dance since early on, is

Mark Coniglio2. In 1989 he created MidiDancer, a system he used in various

projects to give dancers interactive control over digital media. In collaboration

with other artists through Troika Ranch, he designes multimedia dance theater

performances.

Not specifically targeting dance, but movement in general, Todd Winkler

builds installations reacting to audience movements. For example, in his Light

Around the Edges installation, a camera records people moving through a space

which adapts to their movements. He notes, that:

As sensing technology matures, artists will be com-

pelled to conceive of work where physical interaction,

computer interaction, and social interaction are vital

to creating new forms of expression and experience.

— Winkler [68]

In addition to installations, he also sees motion input as an exciting prospect

for interactive music systems [66]. Thus, “extending the performer’s power of

expression” over existing musical instruments.

2http://www.troikaranch.org

4 of 117

http://www.troikaranch.org

Chapter 1 Section 1.2. Interactive Dance

While the use of motion and dance for artistic purposes is an exciting field on

its own, this aspect is not the focus of this thesis. However, some more examples

of artistic use of this technology are given in Chapter 2, when detailing sensor

choices.

1.2.2 Interactive Dance in Video Games

Using dance as input for video games was pioneered by the Dance Dance Rev-

olution3 series, which started in 1998. In this series, players need to step on

sectors of a floor mat according to a given choreography. The sectors basically

act as buttons, being triggered by a player’s feet. Dance Dance Revolution is

available in arcade and home versions, and has inspired numerous clones like

the In The Groove4 and Pump it Up5 series. Systems, such as those from the

iDANCE series6, do scale to up to 32 players and are also used in a fitness context.

Some games, like Dance Factory7, use a camera to also analyze hand motions,

i.e., asking players to point in a given direction at a prescribed time. Other

games, like Just Dance8, eschew the dance mat and use input devices like the Wii

Remote (the controller for Nintendo’s Wii console) to detect dance movements.

The ParaParaParadise9 game uses motion detector sensors to observe upper body

movements, which are the most important component of the Para Para dance

style.

Dance based video games are a subset of music video games, which are

quite popular in general. For further information on the genre and Dance Dance

Revolution in particular, an article by Smith provides a good starting point [60].

An overview of input devices used in music video games and descriptions of the

games themselves can be found in an article by Blaine [12]. Dance in video

games is generally almost exclusively used as a means of rhythmic input. Certain

steps have to be performed at a given time and points are awarded or deducted

based on doing so correctly. In most games dance input is just another form

3http://www.ddronlinecommunity.com
4http://inthegroovegame.com
5http://www.piugame.com
6http://www.positivegaming.com/index.php?id=34
7http://www.codemasters.com/dancefactory
8http://justdancegame.us.ubi.com
9Only an emulator is available at http://www.paraparaparadise.net

5 of 117

http://www.ddronlinecommunity.com
http://inthegroovegame.com
http://www.piugame.com
http://www.positivegaming.com/index.php?id=34
http://www.codemasters.com/dancefactory
http://justdancegame.us.ubi.com
http://www.paraparaparadise.net

Chapter 1 Section 1.2. Interactive Dance

of button presses. As in the case of interactive dance in art, the application of

interactive dance was not a target scenario for this thesis. However, this does not

preclude aspects of motion pattern recognition being appliable in that context as

well.

1.2.3 Interactive Dance in Clubs

Dance clubs are another setting that could profit from interactive dance. One

open question in that context is how to enable more audience interaction and

interactive dance is one possible way to do so. Before exploring such interactions

though, a step back and an examination of the setting are in order. In a dance

club, there will be at least one DJ (disc jockey) mixing the music. In addition one

or more VJs (visual jockeys) might work on accompanying visuals for the club.

Any number of other groups, like Go-Go dancers, aroma jockeys (people mixing

fragrances, at an event, to add to the overall experience) or people operating

foam machines, might also have a stake in the overall experience. In general,

all those stakeholders in the dance club experience already are well trained in

interacting with the crowd. A DJ, for example, needs to be able to determine

appropriate musical choices and change his performance according to the crowd

at hand.

To determine how DJs already interact with their audiences and what they

felt could be done to improve said interaction, Gates et al. did a user study,

interviewing eleven DJs [25]. DJs were generally confident in their ability to read

cues in the audience and react accordingly. They would change their mix and

adapt tempo, mood and intensity of the music, to fit an audience’s energy level.

They might also speak to the audience directly or communicate via body language

to further engage the audience. The primary way DJs determine an audience’s

state was identified as visual. Thus, this mostly includes body language like

gestures, winks, smiles, nods, intensity levels and overall audience movement

(e.g., to or from the dance floor). DJs also listen to audible cues such as laughter,

yelling and cheering. All of those cues require a certain closeness and the DJs in

the study pointed out a dislike for settings where they were removed from the

audience to some extent. Lack of a good field of view from the DJ booth, for

example, already reduces their ability to react to the audience. Regarding systems

6 of 117

Chapter 1 Section 1.2. Interactive Dance

designed to help them in with their work, DJs were critical of automation, fearing

a loss of artistic freedom.

While Gates et al. only interviewed DJs, most of the points brought up will

also be relevant to VJs. While concerned with visuals instead of audio, they

also work on shaping the club experience and are dependent on cues from the

audience to determine appropriate visual choices. However, VJs often enjoy a

heightened amount of possibilities when it comes to interacting with the audi-

ence. For examples, visuals might incorporate live video feeds and work has been

undertaken to enable audience members to stream live video from their mobile

handsets to be used as well [20]. A more in-depth introduction to VJing and an

overview on the history of VJing can e.g., be found in articles of Annet Dekker

[15] [16].

Similar to the work done by Gates et al., nine VJs were interviewed by En-

gström et al., to determine their thoughts on their practice [20]. One aspect here

was how their work relates to the work done by DJs. VJs would often note, how

their visual building blocks also feature pulsating elements, that they would then

bring in sync with the music playing. Matching the rhythm of those two elements

was seen as important for the overall quality of a performance. Like DJs, VJs also

did not want any systems automating too much of their workflow, especially in

regards to artistic control. VJs generally felt, that they had less interaction with

the audience than DJs, noting that often people do not even associate them to

the visuals. However, VJs do look for visual cues in the audience to determine

the quality of their performance. One VJ for example pointed out that “[I]f

someone is dancing looking at a screen, then we understand that it contributes to

the atmosphere” [20]. VJs also use the DJ as a point of reference, e.g. anticipating

music changes when they see a DJ grabbing a new record.

Drawing from their study of DJs, Gates et al. came up with a list of ten

human-computer interaction (HCI) recommendations for systems catering to that

user group[25]:

7 of 117

Chapter 1 Section 1.2. Interactive Dance

Quality of Information DJs are already good at determining the level of excite-

ment in their audience. Any new system would need to provide information

that is more detailed and/or more precise.

Audience Information While DJs can read emotional cues in their audience,

they are unable to ascertain their musical preferences and background.

Software assisting in collecting such background information could be

valuable, especially in more diverse settings.

Issues of Voting Giving the audience too much control over what music to play

is viewed critically. It disempowers DJs to some extent and hampers with

their role of introducing new music. It also could lead to a more chaotic

and less well designed experience. Indirect audience interaction is seen by

Gates et al. as a more promising choice.

Speed of Musical Changes Instantaneous changes might disrupt the flow of the

music and thus negatively alter the overall experience. Careful planning

has to be employed for smooth musical arcs over several songs. Short sound

events like scratching on the other hand are still a valid option.

Composition The overall composition of a set matters a lot. Software intended

to perform music selection on its own should take into account the expert

knowledge of a human DJ.

Measurement of Excitement Limiting the measurement of audience satisfac-

tion to people on the dance floor is only half of the big picture. As DJs

cater to the whole club, any measure of success should take into account

all people and their individual characteristics.

Biofeedback While biofeedback mechanisms are an exciting new way to measure

audience properties, HCI designers should take into account if and how a

meaningful translation to information for the DJ can be accomplished. As

the first point states above, this information needs to be better than cues

already available to DJs.

History While DJs would like to know about the tracks played by other DJs before

them at the same event, they are often hesitant to share that information

themselves. Software compiling such information needs to be aware of

8 of 117

Chapter 1 Section 1.2. Interactive Dance

possible privacy constraints and should be open to improvisation on the DJs

side.

Cognitive Load DJs already have to coordinate a number of tasks when perform-

ing. Any new technology should not add to their cognitive load. The goal

should be to make menial tasks more efficient, as to allow DJs to focus on

the creative aspects of their line of work.

Usage of Information When new information is made available to DJs they

should be given full freedom to interpret it in their own way. Automating

the creative process or predetermining ways to work with such informa-

tion would restrict their artistic independence and their possibilities to set

themselves apart from their peers.

In general, they argue for systems that provide additional information to, but

do not automate decisions for the DJ. This somewhat clashes with the desire

to not increase cognitive load, though. However, this can be seen as a delicate

balance, where any additional cognitive load has to be connected to at least an

equal gain in informational efficiency. Gates et al.’s recommendations also apply

to VJs, who face similar challenges. In fact, getting feedback from the audience is

even more important for VJs, who might directly incorporate such feedback into

their visuals. Especially if generative art is mixed into the video output, complex

mappings could be employed to make direct visual use of audience data.

As described above, DJs and VJs rely on subtle cues from the audience in their

effort to facilitate an exciting sensory experience for them. Interactive dance

can be utilized in this context to provide additional cues about the audience’s

state. As per the HCI recommendations by Gates et al., this additional feedback

should be informative and hence should not be intended for automation purposes.

Interactive dance seems most promising in aiding the VJ, as it could easily be

adapted for generative art or as a general input in the visual performance process.

In this context, Ulyate and Bianciardi early on explored possible uses of

interactive dance in clubs [64]. At the 1998 ACM SIGGRAPH convention, they

set up a club where participants could influence real-time graphics via dancing.

Among the prototypes explored were:

9 of 117

Chapter 1 Section 1.2. Interactive Dance

• A zone with light beams that, when broken by a participant, triggered

musical phrases.

• A visualization of a dancer’s body heat and motions using the images from

an IR camera.

• An array of pads that, when stepped on, trigger musical phrases and accom-

panying projections.

• A platform, where one could control the music with one’s shadow.

• A zone with proximity sensors, reacting to hip movement, where percussion

sounds and computer graphics are controllable.

Some of those interactions only work for a single participant, while others

work for pairs or larger groups. When testing their interactive dance club, Uly-

ate and Bianciardi found that those devices that allowed for more freedom of

movement, were yielding more satisfying dance interactions than devices such as

buttons or pads. In light of the HCI aspects, the role of an “experience jockey”

was devised. This person controls the overall experience and changes mappings

according to the current situation. With this new role, no additional stress is put

on DJs or VJs.

Also interested in dance club interactions, Feldmeier did a user study on their

viability and quality [22]. For this purpose, he designed small, disposable sensors

to be distributed to dance club patrons at low cost. When one of those sensors

detected an acceleration above a given threshold, a signal was send to a base

station. From the aggregated signal data the system could determine a set of

features. Among them the number of signals received in a two second time frame,

the time passed since the last signal arrived or the peak frequency of the data.

Ultimately, an estimate for the overall tempo and energy of the crowd was com-

puted. Based on that estimate, the music and lighting were changed. Several user

tests on groups of up to 200 participants were done. While some tests were used

to determine the technical performance of the system, others had questionnaires

to gather participant opinions as well. Evaluating those questionnaires, an over-

all positive user response to the system was indicated. Participants enjoyed the

10 of 117

Chapter 1 Section 1.3. Overview

experience itself and felt that the music and lighting adapted well to their motions.

This thesis is primarily interested in the application of interactive dance in

a club environment, too. However, while dance clubs are the usage scenario in

mind, this thesis is not a user study in that setting. Instead, the parameters of a

dance club setting influenced design decisions made and features evaluated.

1.3 Overview

In this thesis, a method is described to detect motion patterns in dance move-

ments. Motion patterns are one feature potentially useful in a club context to

aid DJs and VJs with their work. This thesis details the steps taken to achieve

acceptable motion pattern detection for this scenario.

Examination of dance movements requires non-standard means of input. As

an inherently multi-dimensional signal, dance movements are far more complex

than e.g., mouse movements. Multiple ways to process dance input are presented

in this thesis, and evaluated as to their feasibility for dance pattern detection.

Specifically, a set of requirements are defined for the usage scenario at hand.

In order to test the proposed system, a prototype was needed. For this purpose,

already available components were combined to assemble a wearable system

prototype. Some changes were made to pre-existing components to, e.g., provide

mounting options better suited to dance movements. The prototype is loosely-

coupled to clients by utilizing a publish/subscribe communication model. This

functionality builds on top of an existing middleware solution.

For the detection of dance patterns, two different ways to compute motion

similarity were build and are presented. As both approaches work on a block

level, a segmentation of the sensor data is performed using beat information

from the audio track. On top of a block’s raw sensor data, additional features are

defined and can be used instead or together with the raw data itself. Thus, blocks

are first transformed to select desired signal components, before being passed on

to dynamic time warping (DTW) and feature vector comparison (FVC) modules

11 of 117

Chapter 1 Section 1.3. Overview

that are able to compute pairwise similarity values. On top of this capability, an

unsupervised clustering algorithm was designed that classifies motion data blocks

according to a threshold criterion, taking into account the block similarities.

As to be able to evaluate the proposed algorithms, an evaluation environment

was created. One part of this environment is a recording application. This compo-

nent, e.g., makes sure to provide comprehensive information to participants and

ensures recording integrity. When evaluating the quality of a recording, the class

labels of the recorded and given sequences have to be compared. A best-fit label

space mapping is presented, which is able to do so. Challenges in interactive

dance evaluation are described as well.

The results are presented and it is shown that the proposed methods both can

be used to distinguish disparate movements. It is also shown that both methods

provide acceptable motion pattern detection even for longer sequences. As the

parameter space of both methods is explored, the most important features to use

are determined. Performance is also compared by movement and it is shown

which movements are easier to classify than others.

Finally, the results of this thesis are put in relation to the target scenario again.

The feasibility of dance pattern recognition for interactive dance experiences in

clubs is described with respect to previous studies.

12 of 117

Chapter 2

Related Work

While the focus of this work is in dance pattern recognition, a number of other

areas overlap with this one. Which sensors to use when it comes to motion, is

one relevant aspect for example. More general pattern recognition ideas also

influence the work at hand and some are presented here as well.

2.1 Sensors for Interactive Dance

There are a number of different approaches to make dance, or body movement

in general, available to the computer. In this section, a number of different

approaches are presented. Sensor systems processing dance movements were

primarily chosen, but a number of other ones that could easily be adapted to

dance motions were included as well. When applicable, the usage scenarios

are described as well, providing an insight into a number of interactive dance

applications.

2.1.1 Sensing Floors

In sensing floor systems the primary focus is on lower body motion. They can be

coupled with other systems for more complete sensor data. Sensing floor systems

mostly vary in respect to resolution, modularity, size and response time.

One of the first sensing floor system was Johnstone’s PodoBoard [34]. The

PodoBoard is made up of a 36 by 40 grid of aluminum tiles. Metal plates were

added to the toes and heels of shoes to be used with it. The four plates are pulsed

sequentially resulting in an electrical signal when in contact with the PodoBoard

and thus allow to determine their position. The shoes are also outfitted with a

piezoelectric film that allows to determine the velocity of a shoe when touching

the board. The board sends out Musical Instrument Digital Interface (MIDI)

messages in response to activity. Foot contact is mapped to note-on and note-off

13

Chapter 2 Section 2.1. Sensors for Interactive Dance

messages, while moving the foot while in contact with the board is translated

into pitchwheel messages. Johnstone built the board for Alain LaMontagne, a

clackage1 performer, who used the board to generate sounds during a perfor-

mance.

For their “Magic Carpet” [46] Paradiso et al. laid out a grid of wires on a carpet

to detect motion. The insulation of the wires was made out of a piezoelectric

material and thus each cable produced a voltage if pressure was applied to it. The

voltage in each wire is checked at 60Hz and if a new peak is detected a note-on

MIDI event is send out. In this MIDI event the note to be played is determined by

the wire number and the velocity of the note by the pressure applied at the wire.

If the pressure falls below a given threshold, a note-off event is send out. Two

doppler radars are used to detect upper body movement activity and direction.

Using those inputs a “relaxing soundscape” is generated by the system. A user’s

movement on the carpet is mapped to sound changes on three different levels.

Around the same time, Griffith and Fernström developed a similar system

based on optical proximity sensors. Their “LiteFoot” [27] system contains 44× 44

sensors in an area of 1.76 m2 and can work in two modes. It either detects reflec-

tions or shadows. In the first mode, light is emitted by the sensors and reflected

by objects on the floor. In the second one the shadows of objects, illuminated

from elsewhere, are detected on the floor. Two software modules were written

for the floor. The first one is used to map foot positions on the floor to notes

in a MIDI signal. The entire floor can be set to one instrument or divided up

into different areas for different instruments. A second module generates visual

output dependent on the movement on the floor. All steps are plotted and fade

out over time. Griffith and Fernström combined these effects in both an Irish

dance and free form modern dance performance.

Building on their previous work, Paradiso and Fernström together with McEl-

ligott et al. tried to combine the advantages of both systems. The “Z-Tiles” [42]

system was a more modular solution and provided better linear response and

spatial resolution. Each tile consists of 20 so-called prexels – pressure elements.

1A seated form of step dance

14 of 117

Chapter 2 Section 2.1. Sensors for Interactive Dance

They are arranged in a pattern that guarantees neighboring tiles interlock. Each

tile has four connectors, one for each potential neighbor. The prexels consist

of a pressure sensitive polymer that changes in conductivity according to the

force applied. While initial force response is fast the recovery time is significantly

lower. The final network of tiles is self-organizing and can be reconfigured while

live. Z-Tiles were used in several projects, with one of them being the mapping

of location and pressure to MIDI notes. They also experimented with systems

sensitive to weight distribution on the floor. For example, this was used for audio

signal processing and navigation in a virtual world.

Srinivasan et al. also built a modular system based on pressure sensitive

polymers [61]. They significantly increased the resolution of the sensor grid

with each 62× 53 cm mat holding 2016 pressure sensors. Each mat of sensors

is connected to the host system via ethernet, which, using switches, allows for

the total number of mats to currently scale up to 128 allowing for sensing floors

of up to 26.7 m2. The entire floor is gapless as the mats are build to allow for a

certain amount of overlap. Each mat independently samples at 30Hz and then

sends the data to the host machine, which collects the samples from all mats.

2.1.2 Sensors in Shoes

Where the previous section described sensing floors, another option is to move

the sensors from the floor to the shoes. Where Johnstone already augmented

shoes to work with his sensing floor [34], there are some approaches that solely

rely on the shoes and omit the floor. Applications are often somewhat similar to

sensing floors, but the spatial restrictions of floors do not apply.

One example of shoes with sensors comes from Paradiso and Hu, who de-

scribed a concept system where a range of sensors are added to dancing shoes in

order to capture dance movements [45]. In the front of each shoe two piezoelec-

tric pads measure the pressure applied by the big and small toes, while another

one takes measurements at the heel. A force-sensitive sensor strip is placed in

the middle of the shoe, along its axis to measure bending. In the heel of the shoe

an accelerometer and a electronic compass are added to measure the orientation

of the shoe. For more accurate results they had planed to add a gyroscope as

15 of 117

Chapter 2 Section 2.1. Sensors for Interactive Dance

well. An embedded controller and a small transmitter were mounted on the back

of the shoe. They sample at 100 Hz and wirelessly transmit the signal to a base

station. On top of this per-shoe data, the position of each shoe in the space is

determined via either a laser rangefinder or a sonar system. When a sonar is used

the shoes will also transmit the measured time delay back to the base station.

Finally electric field sensing is used to determine the elevation of the shoes above

the stage.

One [47] and two [48] years later Paradiso and Hu together with Hsiao built

working prototypes of the above mentioned system. The first one was used in an

interactive dance performance, where, for example, samples were triggered and

tempo and volume were controlled by dance movements. In the second paper

they additionally describe a more complex mapping where music was synthesized

based on the movements performed and the dancer’s position on the stage.

Kim et al. created the Shadow Dancer system that aims to generate a visual

dance partner to accompany a human dancer [35]. For this purpose they added

pressure sensors to the tip and the heel of step dancing shoes. As they specifically

target step dance, limiting themselves to pressure sensor works in their scenario.

Four patterns are defined as building blocks for step dance. To find the best

matching one, the step intervals are calculated, which provides a sufficiently well-

performing classifier. For each pattern a number of video clips were pre-recorded

and pre-processed to show only dancing silhouettes (hence the name Shadow

Dancer). When a pattern is danced, the system projects a matching pattern on a

screen to dance along the human dancer.

Where other shoes presented here contain a range of sensors, Fujimoto et

al. only added one three-axis accelerometer to the tip of each shoe [24]. For

their project they were specifically interested in B-boying (breakdance). When

B-boying, the dynamic adaption to the music and the personal expression in the

dance movements is of special importance. Taking that into account, Fujimoto

et al. designed their system to be customizable for this scenario. Dancers train

the system with a set of motion definitions. They also wrote script to define what

sound is to be played in response to which motion. The scripting language allows

16 of 117

Chapter 2 Section 2.1. Sensors for Interactive Dance

for states (varying mappings) and varying degrees of mapping complexity. This

ranges from simple one-to-one mappings of motion to sound, via predicate map-

pings (movements have to be danced in a certain order) to aggregate mappings

(a movement has to be danced x times in a row to trigger a sound). Unfortunately,

Fujimoto et al. do not specify how they match motions with each other. They

state that they are using a dynamic programming algorithm, but do not state

which one. A live performance of the system with two dancers in a dance battle

was shown in Kobe on December 2007.

Apart from interactive dance, sensor shoes can also be used in sports. Hock-

man et al., for example, built a system that changes the tempo of a track according

to the pace of a runner [32]. For this, a two-axis accelerometer is fitted into a

running shoe and used to detect the step frequency. This detection is performed

by smoothing the signal with a median filter, thresholding it and auto-correlating

it with itself. This already results in a set of potential beat periods, which is

further weighted with a Rayleigh distribution that emphasizes step frequencies

more likely to occur in a running human. The detected step frequency is subse-

quently used for time-scaling the audio track. To enable this, the audio track is

beat-tracked in a pre-processing step and this information is used to compute the

proper scaling factor.

2.1.3 Camera-Based Systems

Where previously described systems relied on extensive electronics and wiring,

camera based systems offer an easy way to capture motions. Naturally, cameras

have been used in a number of systems and several platforms exist to build upon.

Four different works are presented here that process video data in different ways

and are designed for an interactive dance context.

Winkler used the Very Nervous System (VNS) of David Rokeby2 for an interac-

tive dance installation [67]. The VNS requires one or two cameras to monitor a

scene. Users can define a grid on top of the video feed, thus defining a set of re-

gions for the camera, or provide arbitrary shapes for those regions. The VNS then

2See http://www.wired.com/wired/archive/3.03/rokeby.html for an interview with
Rokeby on the Very Nervous System (last accessed on March 23rd 2010)

17 of 117

http://www.wired.com/wired/archive/3.03/rokeby.html

Chapter 2 Section 2.1. Sensors for Interactive Dance

determines the amount of motion in each region. This is done by computing the

difference between the current frame and previous ones. All video is converted

to 6 bit gray-scale before that difference is computed. There are two modes

available when using the VNS: either the difference to recent frames is calculated

or the difference to a specifically set frame. In the first mode current motion is

detected, while the second mode can detect things not present in the reference

frame. If motion is detected an activity value for each region is computed based

on the amount of difference detected. Large amount of change in a region yields

a high value and vice-versa. Note that not only motion but lighting changes or

color changes influence the VNS. For his project, Winkler defined a 4× 4 grid and

used the first VNS mode to detect motion. Several mappings were explored with

the simplest ones being one-to-one mappings of region activity to MIDI notes

played. More complex interactions included the mapping of regions to a set of

notes, triggered one after the other, changing the tempo based on region activity

or using the regions as on-off switches for a virtual sequencer.

Where Winkler used a simple camera, Bevilacqua et al. decided to use a whole

3D motion capture system [10]. Dancers had to wear a number of reflective

markers that are tracked by eight video cameras. Using triangulation, the 3D

positions of all markers can then be computed for every frame. Ultimately, the

animation data is supposed to control the sound. To simplify the needed map-

ping, Bevilacqua et al. first reduce the size of the raw data by extracting a set

of relevant motion features. They do not specify the final mapping but define

classes of parameters from which to choose according to each project’s needs.

One might e.g., be interested in the positions of points in the scene or distances

and angles between points on the body. Other relevant features are the velocity

and acceleration of body parts. Exploring potential concrete mappings is left

by Bevilacqua et al. for future work. Among the potential ones mentioned is a

mapping that triggers sounds based on a dancers position on the stage or changes

in direction of body parts. They mentioned “promising results” for applying dance-

controlled filters to pre-existing audio tracks playing. A last area pointed out is

sound synthesis based on dance movements.

18 of 117

Chapter 2 Section 2.1. Sensors for Interactive Dance

Similar to the work of Bevliacqua et al. mentioned above, Castellano et al.

used cameras to determine a set motion features [13]. Based on the EyesWeb

platform, they evaluated two measures: the quantity of motion and the contrac-

tion index. The quantity of motion relates to how energetic the movement is, i.e.,

more vivid movements yield higher values. The contraction index, on the other

hand, is computed based on the space occupied by a dancer. Castellano et al.

also determine the current emotion via a mapping from the two measures to an

emotion space. For their visualization the silhouette of the dancer is projected

in a color dependent on the recognized emotion. Additionally they use pDM3

to interactively control the expressivity of the music played. Here, the quantity

of motion maps to the tempo of the music, the contraction index controls the

volume and the detected emotion is used for articulation.

An interesting approach is taken by Guedes, who used video data to detect

the frequency of movements [28]. For each frame he computed the difference to

its predecessor as the sum of luminance changes. Given sufficient background

contrast, the more movement occurs, the higher the frame-by-frame difference

will be. In a first step the resulting activity-over-time signal is transformed

into the frequency domain. Guedes used a set of 150 band-pass filters (instead

of a fast Fourier transform (FFT) because of concerns for speed), to detect

frequencies in the range of 0.5 Hz to half of the sampling frequency. In a next

step the prominent frequency of the signal is extracted. For this purpose the

auto-correlation of a 1 Hz pulse train in the frequency domain with the signals

frequency domain representation is used. This is done to emphasize periodic

movements and dampen singular frequencies. For one project he then used the

dominant frequency to control the playback speed of a piece of music, i.e., faster

dancing would also result in higher musical tempo. He also described another

usage scenario, where frequency and amplitude data of multiple harmonics can

be utilized to synthesize rhythms. From 2003 to 2005 his system was used for

two interactive dance performances and one interactive installation.

3A set of pure-data scripts found at http://www.speech.kth.se/music/performance/

download/ (last accessed on March 20th 2010)

19 of 117

http://www.speech.kth.se/music/performance/download/
http://www.speech.kth.se/music/performance/download/

Chapter 2 Section 2.1. Sensors for Interactive Dance

2.1.4 Wearable Sensors

While sensor shoes already constituted a form of wearable sensor, this category

is reserved for systems concerned not just with the feet. Wearable sensors are

a large category with a diverse set of sensors being used. With accelerometers,

gyroscopes, bend sensors, magnetometers and proximity sensors among the pos-

sible choices, very specifically adapted systems can and have been be designed.

They all have in common, that they are somehow mounted on the body and e.g.,

strapped to a participant using velcro. In contrast to floors or cameras, sensor

data transmission is an aspect that needs to be covered as well, when sensors are

worn. This section describes a number of such systems and their application to

interactive dance.

Evaluating Bluetooth as choice for communication with wearable sensor sys-

tem was the focus of the work of Hromin et al. [33]. For their prototype they

built a wearable module that holds a microcontroller, a Bluetooth transceiver

and one to five sensors. Sensors tested include accelerometers, flex sensors,

temperature sensors, photoresistors and pressure sensors. When running, the

wearable module periodically sends IP packets to a Bluetooth access point, which

relays them to the host PC via ethernet. To keep the overhead low Hromin et al.

decided to only implement the lowest layer of the Bluetooth host stack, which

they deemed sufficient for the transmission of raw sensor values. Evaluating

their choice of Bluetooth Hormin et al. were generally satisfied with the low

power consumption and low costs (compared to 802.11b) of Bluetooth. However,

the size limits on Bluetooth piconets (up to seven devices) were deemed to be

too restrictive in the context of dance clubs. Hromin et al. also believed that

Bluetooth is “needlessly complex” which, in combination with their other points,

led them to the suggestion that a new wireless protocol for this kind of scenario

might be needed.

Three years later Aylward and Paradiso started out to build a similar system

[3]. They, however, did implement their own wireless protocol for this purpose.

Each sensor has a three-axis accelerometer, a three-axis gyroscope, a proxim-

ity sensor (node-to-node) and a radio. The radio is capable of up to 1 Mbps,

20 of 117

Chapter 2 Section 2.1. Sensors for Interactive Dance

which is sufficient for 25 sensors being polled at 100 Hz. During their testing

they found the range to be at about 50 feet. A custom base station controls

the communication on the network (broadcast poll with simple time division

multiple access (TDMA) response scheme) and connects to the host PC via USB.

With their custom system they were able to achieve uptimes of up to four hours

with 289 mAh of power supplied. With the ability to record dance movements

of multiple persons simultaneously, they set out to evaluate their system in this

kind of scenario. Three ballet dancers received two sensors each (worn at the

right wrist and right ankle) and their ballet lesson was recorded. Aylward and

Paradiso used to sensor data to determine if all dancers were in sync or whether

one of them was ‘off ’. While recording, the cross-covariance of each sensor pair is

computed (within a one second window). This allows for some lag (the window

length) and provides a measure of similarity. In their evaluation, they found that

this approach can accurately determine which dancers lag behind. In addition

to synchronicity, the level of activity and the separation of gestures are also

relevant. As one approach Alyward and Paradiso proposed to use the variance

envelope for this purpose. They also note that comparison of overall signal vari-

ance to individual axis variance can be useful in determining the dominant sensor.

While Alyward and Paradiso, at the end of their above mentioned paper,

discussed possible musical mappings for their sensors, they only explore these a

year later [4]. They equipped five dancers with two sensors (an iterated design

of their previous sensor system) each. After recording a performance they set out

to test the viability of their system in generating music according to that dancing.

They came up with a system where instruments could either be controlled by

group movements, by solo movements or combinations of those two. For example,

the loudness of a violin was controlled by the global activity level of all dancers,

while the pitch of the same violin was controlled by how in sync the dancers were

as a group. The flute sounds were triggered by that dancer, who deviated from

the rest of the group. Latency is mentioned as one problem of this approach, due

to the one second window size. The musical mapping was also not yet evaluated

in a live performance setting, where the latency would be even higher.

21 of 117

Chapter 2 Section 2.1. Sensors for Interactive Dance

Where Hromin et al. used Bluetooth for communication and noted that 802.11

was comparably less feasible, Fléty set out to evaluate just that [23]. His WiSe Box

did not have any build-in sensors but was intended as a generic communication

module. A Wise Box contains a microcontroller and a WiFi card. One sensor can

be connected to the Wise Box’s analog-to-digital converter (ADC) and is sampled

at 16 bit. Sensor values are packaged in Open Sound Control (OSC) messages

before transmission and OSC is also used to send commands to the Wise Box.

When battery testing the Wise Box would run 125 minutes on 900 mAh without

a sensor connected. No performance numbers were given for operation with a

sensor attached. How many Wise Boxes can share a wireless channel is dependent

on the sampling rate. Fléty states that at 5 ms periods up to 4 devices can be

connected to an access point. He himself has used his system for a performance

with five dancers.

How to help in the process of composing was the motivation for Stewart, who

also build a wearable sensor system for this purpose [62]. He used accelerome-

ters, flex sensors, a proximity sensor and an orientation sensor, whose readings

are all converted to MIDI messages for further processing on a host. Stewart also

defined a gesture vocabulary of 18 sparring movements, each with its own custom

mapping of sensor readings to sounds. For Stewart this enables what he calls a

‘cyclic relationship’. Here the sound influences the composer’s movements which

in turn control the sound, thus shaping the creative process. Stewart believes

this system enables him to better translate his ideas into an aureal form, noting:

“Technology that can catch, examine and reproduce gesture brings us a few steps

closer to tapping into learned and unconscious behavior.”

Flex sensors were also used by Siegel and Jacobsen [59]. They had eight flex

sensors sewn onto elastic supports (normally used for sport injuries) and con-

nected to a wireless transmission unit. There, the sensor signals were converted

to MIDI and further relayed. Two sensor sets were built and used in two different

interactive dance pieces. As those two were already described in Section 1.2,

further details are omitted here.

22 of 117

Chapter 2 Section 2.1. Sensors for Interactive Dance

2.1.5 Additional Sensor Options

An interesting approach was taken by Latulipe and Huskey [37]. Instead of

building a custom input device they repurposed a set of Logitech MX Air mice

to control a visualization. Those mice work like regular ones but do not require

a surface to sit upon. A total of 6 mice was used by 3 dancers in several per-

formances. The mouse positions were mapped to control either the locations of

6 objects, more complex parameters for 3 objects or to control only one object

in the visualization. Because of the off-the shelf hardware used, however, the

dancers were somewhat constricted in their movements. Being required to hold

the mice in their hands, they were unable to perform any moves dependent on

hand support.

Closely related to dancing, Bayliss et al. used accelerometers embedded into

pois, to detect and visualize movement patterns [7]. Pois are spheres attached to

the end of leashes that are spun around the body during a performance. They

are especially used in club settings and can be glowing or on fire. A two-axis

accelerometer is glued to the top of a poi, which is wired to a computer. First only

interested in being able to distinguish three basic poi movements, they later chose

to translate the sensor data to MIDI. In that translation acceleration measured

at the poi is mapped to the pitch of a generated signal, making the movements

audible. While the poi movements themselves are not directly a form of dance,

they are embedded into a human performance in a musical environment and

therefore also can be seen as part of a dance as well. Bayliss et al. in their

paper also describe how poi performances play into the club setting and how

they interrelate with dance, underlining the notion of a deep connection between

the two.

El-Nasr and Vasilakos built a combination of a wearable system and a floor sys-

tem to enable a lighting influencing experience [18] [19]. They used a SenseWear4

armband, measuring heat flux, skin temperature, near body temperature and

galvanic skin response, together with the output of a heart rate monitor. Based on

that data, they could estimate a dancer’s arousal state. The location of the dancer

4See http://www.sensewear.com (last accessed on March 20th 2010)

23 of 117

http://www.sensewear.com

Chapter 2 Section 2.2. Recognition Algorithms

is determined by the pressure sensitive floor and thus the system is able to tell

what lights currently affect the dancer. Ultimately, all that data is used to adjust

the music (artists had to define a rule system for music-to-arousal mapping), the

scene lighting and the lighting of a virtual backdrop to the arousal state. The

lighting to arousal mappings are based on light theory and rules they deducted

from movies.

Finally, Ng described three different motion-to-music mappings for interactive

multimedia performances [44]. In the first one a camera is used to track dancers

on stage, wearing color-coded costumes. In the second one facial features are

tracked. In the last one drum brushes are outfitted with flex sensors. In all cases,

his “Music via Motion” framework maps incoming data to MIDI events and wave

output and thus is able to e.g., control the pitch of an instrument or the whole

background music in a performance.

2.2 Recognition Algorithms

Detecting patterns in motions or working with motions in general, poses a set

of challenges. How to detect similarities and what features are relevant for that

being the most relevant ones. In this section some approaches to this problems

are detailed. As e.g., questions of motion similarity are not only relevant to dance

patterns, some works of a related focus were included as well if their approach

was deemed transferable to dance motions. In order to not be too general, works

on activity recognition were not included. While some aspects are similar, activity

recognition is usually dealing with longer time periods, which does not readily

transfer to gestures or poses.

In general, recognition algorithms for motions can be roughly split into two

groups:

• Algorithms computing features for whole blocks of motion data (segmented

according to some criterion) and using those features to determine similarity

• Algorithms computing similarities of temporal sequences directly (such as

hidden markov machines (HMM) and dynamic time warping (DTW))

24 of 117

Chapter 2 Section 2.2. Recognition Algorithms

Both of these groups will yield a similarity measure for two given sample se-

quences, where different distance metrics might be used by either of them.

With a way to determine similarities available, the question of classification is

coming up next. Classification could be done via methods such as support vector

machines (SVM), neural networks or the k-nearest neighbors (k-NN) algorithm.

In Chapter 4 this is further detailed.

2.2.1 Hidden Markov Models

HMMs are traditionally used in gesture recognition and thus it comes as no

surprise that they can also be adapted for dance input and other body move-

ments. In one of the non-dance examples Kunze et al. used accelerometer and

gyroscope readings in trying to classify Tai Chi poses [36]. Eight sensors were

strapped to the test subjects (one expert and two amateurs) and three different

Tai Chi movements were recorded. In line with the notion that in Tai Chi the

“total consumed energy is supposed to be as small as possible”, the squared angular

velocity was evaluated as a feature. In their sample the square angular velocity

did indeed correlate with Tai Chi experience. However, Kunze et al. note that the

sample size is too small to draw conclusions. In another approach, Kunze et al.

used a sliding window and for each range calculated the corresponding feature

vector. Unfortunately, they do not specify which features were used, except the

75% percentile (75% of the sensor values are below that feature’s value) and the

frequency range power. Initial classification tests with HMMs performed at up to

85% accuracy. As Kunze et al. state, their results are only preliminary and while

they indicate it might be feasible to classify Tai Chai expertise, a validation of

that claim is yet missing.

Similarly, Bevilacqua et al. built a custom sensor system with a three-axis

accelerometer and a two-axis gyroscope which sends out OSC messages using

Zigbee for wireless data transfer [11]. Ultimately interested in gesture input,

left-to-right HMMs were used as model and to compute gesture similarity. When

learning a left-to-right HMM for a new gesture, the signal is downsampled (typi-

cally by a factor of 2) and each value in the signal is mapped to its own state in

the HMM. The transition probability from one state to the next is dependent on

the downsample rate (1/downsampling factor). The observation function at each

25 of 117

Chapter 2 Section 2.2. Recognition Algorithms

HMM state is a multidimensional gaussian where each dimension corresponds to

one sensor axis, with the gaussian mean set to the sensor value. The variance to

use is set by the user to control the desired fit. The system was evaluated in an

experiment where students needed to match conducting gestures of a teacher. If

a student’s gestures deviated from the trained gestures the rhythm of the music

would deviate accordingly.

Matching whole body motions of varying speed with a set of pre-recorded

ones to control avatar motion was the goal of the work of Liang et al. [39].They

especially emphasize ways to refine the input signal for motion matching. For

example, after automatic segmentation, all motions are normalized in the time

dimension by fitting a cubic spline and resampling at the desired resolution. The

amplitude of the signal is also normalized to x′ = (x − x̄)/Var(x). In another

pre-processing step, principal component analysis (PCA) is used to extract key

features from the signal. The final recognition is performed with HMMs, with

one trained per training set. When a matching motion is found, the avatar is

animated accordingly. In an intermediate step however, the target animation is

first time warped to the speed of the recognized motion. Thus a slow kick and

a fast kick are recognized as the same motion (due to the resampling described

above) but result in different motions being shown. According to the force of the

input motion, generated motions might also be exaggerated.

While the above mentioned approaches were not specifically targeting dance

motions, Gutknecht et al. used HMMs for Butoh, a form of experimental

dance [29]. Setting out to classify movements, they designed a discreet three-

dimensional motion space (‘intensity’, ‘form’ and ‘flow’) yielding a total of 64

motion categories. Dancers are equipped with three-axis accelerometers at the

wrist, upper arm and upper leg, whose readings are relayed via Bluetooth. For

classification, the values in a two second long sliding window are transformed

into a sequence of features. On those features three HMMs (one for each dimen-

sion) are used to determine the most likely motion state sequence (remember

that motion states are discreet here). The final motion state decision for the block

is done using a majority vote. Gutknecht et al. furthermore designed a mapping

26 of 117

Chapter 2 Section 2.2. Recognition Algorithms

from the motion space to a custom emotion space and subsequently derived a

visualization from the detected emotional state.

2.2.2 Dynamic Time Warping

Another method, somewhat similar to HMMs is DTW. In fact, left-to-right HMMs

like the ones used by Bevilacqua et al. and DTW are two solutions to the same

problem. The general idea is to compute the similarity of two given sequences

that may differ in the temporal domain. While left-to-right HMMs can be adapted

to do so by setting the transitional probabilities accordingly, DTW tries to find the

overall best fit using a dynamic programming approach.

Tang et al. developed an algorithm to find repetitive patterns in motion

capture data of dances [63]. When recording, 35 markers are tracked on a

participant and the resulting posture data is normalized (body center as origin

and facing frontwards). From the resulting motion sequence a similarity matrix

is derived. Postures in two frames are similar if the sum of the point by point

euclidean distances is low. Repetitive motions can now be deducted from the

similarity matrix, where diagonal patterns of similarity denote sequences, equally

changing over time. Tracing patterns in the binarized similarity matrix in some

respects is thus equal to similar image processing problems. Tang et al. use DTW

to find such traces. Finally, using auto-clustering, patterns are classified as either

cyclic or acyclic and an estimate of the cycle period is computed.

DTW was also used by Bettens and Todoroff, who set out to detect gestures

in a continuous sensor data stream [9]. For this purpose two sensors (three-axis

accelerometer and two-axis gyroscope) are placed on both ankles of a dancing

viola player. When performing, the downsampled sensor values are matched

against a database of pre-recorded gestures. However, no segmentation of the

live signal is tried. The signal is matched against the database at a number of

different offsets instead.

27 of 117

Chapter 2 Section 2.2. Recognition Algorithms

2.2.3 Non-Temporal Feature Classification

In addition to the two approaches mentioned above, that work on time series,

there are a number of other possibilities for classification. If feature vectors are

available for example, similarity of movements can be computed using various

distance metrics. Classifiers like a support vector machine (SVM) can also be

used to segment the feature space. In this section several different algorithms

are presented that illustrate the range of possibilities. With some directly target-

ing dance, all are at least concerned with body posture and similarities of motions.

One example, where feature vectors and a distance metric are used, is the

work by Crampton et al., who set out to use poses as video game input [14].

For sensor input, four three-axis accelerometers are placed on the arms and

legs. In the training phase poses are recorded as mean and standard deviation

per sensor per axis. When recognizing, the incoming sensor data is compared

with all training poses and assigned to the class with the smallest distance. The

Mahalanobis distance metric is used, which adapts to existing correlation and

is scale-invariant. They tested their algorithm in a user study, where seven par-

ticipants were instructed to perform eight poses. The study yielded satisfactory

results and also indicated that with larger training sets or more training from the

players, further improved accuracy can be obtained.

Where other systems use body sensor input, Peng et al. built a system using

two orthogonal cameras [49]. Their system is dependent on training data and a

set of poses was motion captured from a professional dancer for that purpose.

The captured data is used to generate synthesized views of the corresponding

poses which is then used to build a tensor. During runtime the video data is

similarly transformed into a corresponding tensor. The tensor is decomposed

using higher order singular value decomposition, which in turn can be utilized

to approximate a pose coefficient vector. This pose coefficient vector will be

view-invariant. With the coefficient vectors of the training set several classifiers

were trained and subsequently evaluated. In their tests SVM classifiers outranked

fixed-threshold and von Mises-Fisher recognizers with recognition rates around

85% and a false detection rate of about 5%.

28 of 117

Chapter 2 Section 2.2. Recognition Algorithms

2.2.4 Algorithms Utilizing Periodic Subspaces

The work of Nevada and Leman also does not fall under any of the previous

categories. They developed a method that is able to detect periodic movements

in dance [43]. Specifically, they were interested in samba dance and how musical

meter is related to the gestures found. For their study two professional samba

dancers were recorded on video performing a set of dance sequences. In the

recorded video the positions of nine body points were manually annotated

resulting in a set of feature vectors with the temporal and spatial resolution

of the input video. A periodicity transform [57] is used to find movements

correlating with musical meter. For this purpose the meter information for the

accompanying music was computed beforehand. When recording, the periodicity

transform projects the signal into a periodic subspace, removes that periodicity

from the signal and repeats the process for other subspaces. Thus, the proportion

of periodicities in the original signal is determined (note how the order of

projections is important and must be carefully chosen). Nevada and Leman pick

the subspaces to test according to musical meter. This allows them to filter out the

strongest periodicities, related to musical meter, in the signal. As this transform

is performed independently for both dimensions, found periodicities can be

either one-directional or bi-directional. While no classification of gestures was

performed, they noted that their approach could provide a useful methodology

for dance analysis, with the periodicities potentially being used as classification

features.

29 of 117

Chapter 3

Wearable Sensor System

Based on a set of requirements, the sensor options mentioned in Chapter 2 are

evaluated. Furthermore the final system design of the prototype is described.

3.1 Requirements

When contemplating the design of the prototype, a number of requirements

were taken into account. The sensors should be unobtrusive and should not

restrict a dancer’s movements. For the same reasons communication to a base

station, if needed, should be wireless. The sensors should be able to capture all

movements (upper and lower body) and to do so at high sampling frequencies. If

battery power is needed, operation should be possible at least for the duration

of one capture session. If dance movements to one song are recorded and

preparation time is taken into account, this requires at least 15 minutes of battery

life. However, much longer system uptimes are desirable. The final system should

be able to work in uncontrolled environments. For example, it should work in

a dance club setting and thus should not be dependent on constant lighting.

Individual dancers should be observable, but scalability to larger groups should

remain a possibility. Thus, any dance capturing has to allow for separation of

dance movements per dancer. Additionally, it is also deemed beneficial if parts or

all of the sensor system can possibly be reused for other projects as well.

3.1.1 Sensor System Choices

As described in the related work chapter, there are a number of sensor designs

which focus on dance. However, not all of them are equally fitting to the target

scenario. For example, camera-based systems largely depend on lighting condi-

tions. While a constant background lighting can be obtained in a lab environment,

dance clubs have wildly varying lighting. This poses problems for algorithms

extracting the dancer’s silhouette from the video stream. One option here is to

30

Chapter 3 Section 3.1. Requirements

use infrared (IR) cameras and illuminate the scene with IR lights. This solves

problems with insufficient lighting or wildly varying lighting to some extent. Sys-

tems depending on visual input also do not scale well to groups of dancers. With

two dancers there is already a good chance for some overlap. Multiple cameras

can alleviate the problem somewhat, but only up to a certain degree of occlusion.

On the other hand, cameras allow movement detection at a comparably low price

and without the need to equip dancers with any sensors. Providing the external

conditions such as lighting and background can be controlled, cameras are a

viable alternative. This is especially true if only the movements of one dancer are

to be recorded. The temporal resolution of the video stream could be a problem

for some applications but high speed cameras can be used in those scenarios

(albeit at a higher price point).

Sensing floors’ main disadvantage is that they are only able to capture foot

movements. Upper body movements can not be detected at all and some motions

like rock steps are hard to detect for some systems. Differentiating multiple

dancers also is hard to do, unless additional sensors are added. Portability of

sensing floors is usually poor. They might be modular and thus could be taken

apart though. However, they will always be heavier and bulkier than other sensor

options. If all recordings are to be taken in a designated space, some of these

disadvantages however disappear. It might even be advantageous to have such

a system as participants do not need to be wired and can start dancing right

away. For this thesis however, a designated room was not available and thus the

disadvantages of floor systems outranked other aspects.

Shoes are an interesting option but, like sensing floors, are not able to capture

upper body motion on their own. When added to other wearable sensors they

offer finer recognition of foot motion. However, if other wearable sensors are

already used the benefit of additional foot sensors might be negligible. If e.g.,

accelerometers already measure leg movements, steps can be inferred. For some

dance styles like tap dancing however, a focus on foot movements could be

appropriate. Another problem with shoe systems is their limited adaptability to

participants. While wearable sensors for example can be adapted to all partici-

pants using straps or similar means, shoes cannot adapt in size and only people of

31 of 117

Chapter 3 Section 3.1. Requirements

a certain shoe size might be eligible participants. In projects primarily interested

in foot movement shoe systems can be advantageous, but for this project whole

body movement was of interest. Combinations of shoe sensors and wearable

sensors could be interesting but come with additional complexity.

Wearable sensors currently are the most versatile option when it comes to

dance movements. They can be placed anywhere on the body and are able to

capture any motion. In a crowd they enable data collection from individual

dancers, independent of occlusion or other outside conditions such as lighting or

visibility. With wearable sensors the additional challenge of data transmission

back to a base station becomes relevant too. Here, a wireless solution is required.

Wires running from the dancers to a base station would restrict their freedom

of movement and would prove especially limiting in larger groups of dancers.

Analyzing data from wearable sensors, however, is harder than e.g., analyzing

data from sensing floors. In sensing floors, foot movement information is readily

discernable. In a wearable system on the other hand the movement measured

in individual sensors is interdependent i.e., arm movements for example also

influence the measurements of sensors placed at the wrists. Wearable sensors also

suffer from additional issues, because they are directly attached to a dancer. If e.g.,

the sensors are worn using straps, they might loosen while dancing thus resulting

in an increasing drift in the recorded values. Recording a dance session requires

a comparatively lengthy preparation for each participant, as sensors need to be

properly attached. When it comes to scalability, wearable systems fare better than

other systems as every dancer is independent from the others. Additional stress is

only put on the communication channel and the data processing host. A scalable

wireless system is therefore required for multiple dancers. Because of the nature

of wearable sensors, battery life plays a larger role too. Running an extension

cord to each dancer would significantly limit their freedom of movement and

practically make some dances impossible (e.g., those featuring severals turns).

Therefore, power has to be provided by a wearable module as well. In general

wearable system are more complex than other choices but also offer significant

flexibility and can be utilized in a more varied range of settings.

32 of 117

Chapter 3 Section 3.2. Hardware

Figure 3.1: Sensor Package Internals

3.2 Hardware

Based on the requirements, a wearable sensor system was chosen for the pro-

totype. The overall system can be split in three parts: the sensors collecting

movement data, a communication link to transmit the collected data and a

host unit able to control sensor sampling, bundle data from all sensors and inter-

act with external clients. All parts are described in detail in the following sections.

Everything apart from the sensors is bundled in a 11.1× 6.2× 3.1 cm box, as

shown in Figure 3.1. In this box, an embedded system and a custom interface

board together take on the role of host unit. A Wi-Fi module is part of the embed-

ded system with an antenna protruding from the box by about 1 cm. By bundling

those parts together in one box, a compact and robust packing is achieved. This

is especially important as some interconnections between the parts in the box are

soldered manually and are rather fragile.

This box, together with a battery, one sensor and a splitter, is worn around

the hips inside a fanny pack (shown in Figure 3.2). This offers a convenient way

33 of 117

Chapter 3 Section 3.2. Hardware

Figure 3.2: Wearable Sensor Package

to wear the bulkier parts of the system without restricting freedom of movement

significantly. By having multiple parts of the system inside this bag the number of

wire connections exposed is reduced. Also, less mounting straps are needed, thus

making the overall system more comfortable to wear.

3.2.1 Sensors

The sensors (shown in Figure 3.3) were repurposed from a previous project of

Aristotelis Hadjakos [30] with no changes made to them. Each sensor contains an

Analog Devices ADXL330 three-axis accelerometer, an InvenSense IDG300 two-axis

gyroscope and an Analog Devices ADXRS300 one-axis gyroscope. The second gy-

roscope is mounted perpendicularly to the first one to obtain a virtual three-axis

one. The ADXL330 has a measurement range of ±3 g while the IDG300 has one of

±500 ◦/s and the ADXRS300 one of ±300 ◦/s. All sensors are sampled with 10 bit

34 of 117

Chapter 3 Section 3.2. Hardware

Figure 3.3: Sensor Internals

resolution. The sensors are housed in a 5.2×3.6×1.8 cm box for added robustness.

While the accelerometers do not need to be calibrated, the gyroscopes are

prone to drift. Over time the gyroscopes zero point shifts and a rotational force

might be measured while no rotation is taking place. To compensate for such

errors, the gyroscopes are continuously calibrated. When sensor data is coming

in, it is also buffered per sensor. After a certain number of samples has agglom-

erated, the deviation for each accelerometer component is computed. If it is

higher for any dimension than a given threshold, the sensor is considered in

motion and is not calibrated. In the other case, the sensor is assumed to not have

moved and any gyroscope readings other than zero are considered erroneous. To

compensate for said error the detected gyroscope deviation is deducted from all

further gyroscope readings. As this calibration is done on a per sensor basis, a

sensor might be calibrated while others are not and vice versa.

To determine if the choice of sensors was appropriate, a dance sequence was

recorded and analyzed. The recorded sequence contained side steps and rock

steps with arm movement ranging from none to stronger movements with the

arms raised above the head. The song used had a tempo of 119 bpm and thus

35 of 117

Chapter 3 Section 3.2. Hardware

Figure 3.4: Sensor Interface Board

falls into the lower tempo range of house music. Faster music styles like jungle or

gabber might elicit more energetic dance movements. Table 3.1 shows the values

measured. Note that all measured values lie within the normal range of the

utilized sensors. A similar measurement, using the same sensors, has previously

been done for movements associated with piano playing by Hadjakos et al. [31].

3.2.2 Sensor Interface Board

To ease working with the sensors, a custom interface board (shown in Figure 3.4)

was built by Hadjakos for this prototype. It connects with all sensors via a con-

troller–area network (CAN) bus 1. The CAN-bus is a broadcast serial bus initially

designed for automotive applications, but now also used in other areas. CAN-bus

can be used on top of a number of physical layers. For this system, electrical

wiring was chosen. While wireless transmission would increase freedom of move-

ment slightly, wiring the sensors also renders batteries in the sensors unnecessary.

Furthermore, wiring allows for abundant bandwidth and scales up to a large

number of connected sensors. In the current system a 1 Mbit/s bandwidth is

provided by the CAN-bus. On the bus, all connected nodes can send messages,

1See http://www.can-cia.org/index.php?id=46 for a more in-depth describtion of CAN
(last accessed on March 22nd 2010)

36 of 117

http://www.can-cia.org/index.php?id=46

Chapter 3 Section 3.2. Hardware

Ta
bl

e
3.

1:
Se

ns
or

ra
ng

es
w

he
n

da
nc

in
g

Se
ns

or
M

in
im

um
0.

1
Pe

rc
en

ti
le

M
ea

n
St

d
99

.9
Pe

rc
en

ti
le

M
ax

H
ip

A
cc

el
er

om
et

er
-3

.4
65

g
-2

.6
49

g
-1

.2
03

g
0.

43
6

g
-0

.1
03

g
0.

23
0

g

H
ip

G
yr

os
co

pe
-3

38
.4
◦ /

s
-2

33
.4
◦ /

s
-8

.9
◦ /

s
56

.2
◦ /

s
15

7.
7
◦ /

s
20

1.
3
◦ /

s

H
an

d
A

cc
el

er
om

et
er

-3
.1

04
g

-2
.7

44
g

-0
.1

46
g

1.
25

2
g

3.
35

8
g

4.
42

3
g

H
an

d
G

yr
os

co
pe

-4
16

.5
◦ /

s
-2

78
.5
◦ /

s
64

.2
◦ /

s
93

.1
◦ /

s
44

9.
7
◦ /

s
52

5.
8
◦ /

s

A
rm

A
cc

el
er

om
et

er
-4

.1
20

g
-3

.0
35

g
-1

.2
47

g
0.

60
9

g
1.

39
3

g
2.

33
1

g

A
rm

G
yr

os
co

pe
-3

91
.6
◦ /

s
-3

05
.5
◦ /

s
29

.4
◦ /

s
76

.1
◦ /

s
31

8.
1
◦ /

s
41

9.
0
◦ /

s

Le
g

A
cc

el
er

om
et

er
-3

.2
99

g
-2

.8
81

g
-1

.2
99

g
0.

46
1

g
0.

23
2

g
2.

59
5

g

Le
g

G
yr

os
co

pe
-4

84
.2
◦ /

s
-1

61
.6
◦ /

s
0.

7
◦ /

s
47

.3
◦ /

s
17

9.
7
◦ /

s
32

9.
4
◦ /

s

37 of 117

Chapter 3 Section 3.2. Hardware

Figure 3.5: Gumstix Internals

but prioritization of more important messages ensures low delays where needed.

The CAN-bus also provides error handling and guarantees data consistency on

the network. The sensors are arranged in the topology shown in Figure 3.7.

The interface board acts as the host unit and controls the sampling of the

sensors. On startup, the board broadcasts a discovery message, triggering a reply

from all sensors. In this way, a list of all current sensors on the bus is compiled.

Using an internal 16 MHz quartz, an interrupt handler is set to be triggered at 100

Hz. At each invocation, the interface board will broadcast a message to all sensors,

notifying them to take a sample. The sensor then reply, sending a message with

their current state. This data is collected by the board and further passed on to

the embedded system. The board and the embedded system interface using a

serial connection. By sending commands over the serial bus, the interface board

can e.g., be instructed to start reading sensor data, change the output format

or stop data collection. Sensor values are passed back to the embedded system

either in textual form or in a binary format for further processing.

38 of 117

Chapter 3 Section 3.2. Hardware

Wearable System

Gumstix

Client System

Console-vx

Board with

Serial Port

Netpro-vx

with WLAN

Sensors

MotionNet

Interface

Board

Verdex Pro

XM4

WLAN

Card
Client Software

Figure 3.6: System overview

3.2.3 Embedded System

The prototype is built around a Gumstix embedded system. A Verdex Pro XM4

mainboard is paired with both, a console-vx expansion board and a netpro-vx

expansion board with the optional Wi-Fi module installed. Both expansion boards

snap onto the Verdex Pro XM4 mainboard and the bundle is locked in place using

a set of screws. To interface with the Gumstix, a serial cable can be plugged into

the console-vx or a connection can be established over ethernet or Wi-Fi. The

console-vx board is also used to connect to the interface board described above,

using one of its serial ports.

Communication

For the communication link between the wearable sensor system and external

clients it was decided to use Wi-Fi. While Wi-Fi was not the best option for a

project like this, some factors still made it an appropriate choice. Other projects

have used Wi-Fi for similar purposes before. For example Fléty used Wi-Fi in his

Wise Box [23] and noted that the performance was “excellent”. Bevilacqua et al.

designed their system with the Wise Box in mind but set out to improve power

39 of 117

Chapter 3 Section 3.2. Hardware

consumption and size [11]. One of the changes they implemented was switching

the Wi-Fi controller for a Zigbee one. Aylward and Paradiso also decided against

using Wi-Fi and instead created their own custom wireless protocol [3] [4]. Both

of those systems use less power than Wi-Fi. On the other hand, they offer signifi-

cantly less bandwidth. For those systems this was not an issue as the expected

throughput of their sensor data was still less than the bandwidth available. Many

systems also use Bluetooth (e.g., [33], [53] or [35]), which requires more power

than comparable systems and does not scale well as each Bluetooth master can

only communicate with up to seven slaves.

Subsequently the choice for Wi-Fi was made based on the direct availability

of an extension board for the Gumstix system. Using another protocol would

have required considerable extra work and time. Furthermore, the Gumstix is

also used for other projects which require a Wi-Fi module (it is e.g., also used for

indoor location awareness). For future systems it would be beneficial, though, to

switch from Wi-Fi to another communication solution.

3.2.4 Sensor Placement

In this project four sensors were available. To be able to register whole body

movements the sensors were arranged to cover arms and legs. One sensor was

placed near the thigh, one at the wrist, one on the upper arm and one at the

hips. The arrangement is also shown in Figure 3.7. With only four sensors

available, it was not possible to cover both halves of the body. However, in

the domain of dance it can be assumed that leg movement of one leg is not

independent from the other one. While an equally strong assumption can not be

made for arm movement, it was still deemed highly unlikely that all movement

is constrained to just one arm. Four sensors also did not allow the placement

of sensors on a lower leg or a foot. Instead, preference was given to upper

body motions. However, this choice does restrict the system in some aspects.

Specifically, the overall system is less sensitive to foot movements. While lifting

a foot will also be measurable at the thighs, such measurements are less pre-

cise. In future iterations additional sensors at those locations would be preferable.

40 of 117

Chapter 3 Section 3.3. Embedded Software

Leg

Interface Board

Hip

Arm

Hand

Splitter

Inside

Fanny

Pack

Figure 3.7: Sensor locations and topography

As noted above, the hip sensor is located inside a fanny pack worn around

the hips. The other sensors are fixed to the body using a set of adjustable velcro

straps. This allows for fast and flexible attachment of sensors. As the straps are

adjustable they can be affixed to participants of varying body size.

3.3 Embedded Software

The OpenEmbedded framework is used to compile a GNU/Linux distribution for

the Gumstix. OpenEmbedded is a flexible environment, designed to cross-compile

code for a range of architectures. For this purpose OpenEmbedded comes with a

number of BitBake files. BitBake is somewhat similar to make and BitBake files

define the tasks to execute and additional metadata. Thus a BitBake file may

e.g., describe where to fetch the source for a package, how to compile it and

what dependencies that package has. BitBake files can also be used to describe

additional user programs to be compiled for the Gumstix.

41 of 117

Chapter 3 Section 3.3. Embedded Software

The program to run on the Gumstix, however, is not compiled using OpenEm-

bedded itself but is built on top of the MundoCore2 communication middleware

[1]. MundoCore is designed to work on a number of platforms and has bindings

for several programming languages. It provides abstractions to ease the develop-

ment of pervasive and distributed systems. For example, MundoCore has facilities

for remote procedure calls, node discovery, publish/subscribe messaging and

marshalling. The code to run on the Gumstix is implemented as a MundoCore

service and uses a serial class included in MundoCore to communicate with the

interface board. For connection with external clients, the embedded software

uses MundoCore’s publish/subscribe mechanisms. Thus, the embedded system is

only loosely-coupled to any client machine.

Receiving commands and sending out collected data is done on a dedicated

publish/subscribe channel. By default, outgoing messages are not delivered to

the sending system. Hence, the embedded software only receives messages sent

by other nodes. In MundoCore a message is always a map of key-value pairs. On

top of this, MundoCore also offers facilities to send objects using externalization

and serialization. Sensor values are essentially an array of floating point values

and, to preserve that structure, are transmitted as a simple binary blob. This

allows for low overhead in the message and easy decoding on the client side. Of

course, the byte order of the Gumstix and the client system need to match, but in

the given scenario that was the case. The number of sensors connected to the

embedded system is transmitted as well, but could potentially also be computed

from the size of the binary blob.

2See https://leda.tk.informatik.tu-darmstadt.de/cgi-bin/twiki/view/Mundo/

BuildCPPoe for instructions on how to build MundoCore for OpenEmbedded devices (last
accessed on March 22nd 2010)

42 of 117

https://leda.tk.informatik.tu-darmstadt.de/cgi-bin/twiki/view/Mundo/BuildCPPoe
https://leda.tk.informatik.tu-darmstadt.de/cgi-bin/twiki/view/Mundo/BuildCPPoe

Chapter 4

Dance Pattern Recognition

In this chapter, the steps taken to find patterns in dance sequences are described.

Patterns in dance are reoccurring movement sequences at one or more levels.

Whether such patterns are apparent or even existent will depend on the dance

style at hand. For example, one could easily construct an experimental dance

piece without such characteristics. However, most dancing will exhibit some

patterns. To look for examples underlining this proposition, one does not need to

look further than the next dance studio or dance club. For instance, all forms of

ballroom dancing and latin dancing feature the notion of the basic step, some-

times also descriptively called basic pattern.

Dance and music are intrinsically related. In fact, they often even share a

name (e.g., waltz, samba, disco or swing). Most dances came into existence with

a specific style of music in mind. For example, breakdance evolved from the

same cultural background that spawned hip-hop music and rock and roll music

inspired the creation of rock and roll dancing. When dancing, certain moves

might correlate with the music playing. People headbanging, for example, will

do so more vividly in high energy stretches of a rock song, like the chorus. Dance

movements are made in close relation to musical meter, also taking into account

any accentuations. For instance, the basic steps in a waltz are arranged according

to the meter with the first one being the dominant one. As our perception of a

song’s meter already provides us with a hierarchy of beats, it is only natural that

this hierarchy is also reflected in the dance movements.

When analyzing dance we can therefore make the assumption that a close

relationship to the music playing does exist. This relationship can be utilized to

help in the task of dance pattern classification. As stated above, dancing contains

patterns and dance movements are aligned with the meter. Therefore, using

meter information for segmentation purposes is a natural choice. While such a

43

Chapter 4 Section

segmentation is not necessarily needed for some algorithms (e.g., Tang et al. [63],

as described in Chapter 2, transform the problem into a new domain where some

computational hurdles no longer hold up), it reduces the complexity of others

significantly. Segmenting the input signal into blocks according to meter, and

thus restricting the interest in similarity to inter-block similarities also is a useful

abstraction in general. While we might search for patterns in sequences smaller

than one such block, such similarities would be less meaningful in many instances.

Taking a step back, possible block lengths to consider and examples for

corresponding patterns are:

Section Level A song playing is made up of a number of sections (e.g., intro,

chorus, bridge, verse and outro), which could be used as a possible seg-

mentation level. In this case, the assumption is that dance patterns might

change in relation to section changes. The chorus, for example, often ex-

hibits a different rhythmic and harmonic structure than the verse and thus

also encourages different dance movements as well. While this is a valid

assumption, it is also rather simplistic. Choruses span several measures,

and verses are usually longer than that. Those measures usually are not

the same musically. Assuming a constant dance movement, spanning all of

them, seems inappropriate. Comparing sections with other sections would

also require temporal normalization of some kind, as no constant section

length can be assumed.

Measure Level Compared to whole sections, individual measures, spanning a

number of beats, seem like a more appropriate choice. However, only

for some basic steps one measure is exactly the time needed (e.g., waltz).

Others span over two measures (e.g., salsa or cha-cha-cha) or only part of a

measure (e.g., discofox, or foxtrot). Thus, patterns at the measure level are

probably not a good choice for standard or latin dances in general. However,

for casual dancing in a club setting the measure level is more appropriate.

Here, basic rock steps and side steps are often the main components being

built upon.

44 of 117

Chapter 4 Section

Beat Level As stated above, some dance moves last less or longer than one

measure. In this cases one might consider looking for patterns on a multi-

beat or beat level. Comparing motions on the beat level however, introduces

a certain arbitrariness. For example, a step forward is part of many patterns.

One could argue, that if such building blocks of larger patterns could be

found, those larger patterns could be derived from them. This approach

is similar to finding repetitive parts in a string or in DNA sequences. The

problem on this level is that a forward step in one movement can be quite

different from a forward step in another one. The steps before and after

the forward step will influence the movement itself. On the other hand, a

complete step sequence (e.g., in a side step) is much more closed against

such influences.

Subbeat Level Going one step further, one might try to look for patterns at an

even more fine-grained resolution than the beat level. In some respects,

one could consider non-segmenting approaches such as the work of Tang

et al. [63] to work on this level. However, when segmenting, this is a poor

choice, as the problems of beat level segmentation are weighting in even

more. Additionally, it is doubtful that patterns at arbitrary subbeat levels

exist. Half beat steps are a part of many dance moves but usually come in

pairs and could be considered as a union (e.g., two quick steps and one

slow step in a chassé).

For this thesis, measure level patterns were deemed the most interesting. As

it is evaluated with respect to a dance music setting and not as a means for

standard and latin dance, this is a valid choice. For this reason the sensor data is

split into blocks of measure length, which subsequently form the basic level for

comparison. Thus, when interested in patterns spanning one g/n measure and

given a song, playing at b bpm and a sensor sampling at f Hz, each such measure

would contain:
60b
g

f

samples. For a 120 bpm song at 4/4 with motions samples at 100 Hz, this would

result in 200 samples in every measure. As can thus be seen, segmenting the data

breaks it down into manageable blocks, where a brute force comparison of all

45 of 117

Chapter 4 Section 4.1. Signal Segmentation

possible shifts would be computationally expensive.

In this chapter the segmentation process and the subsequent classification are

described in detail.

4.1 Signal Segmentation

As stated above, pattern comparison is to be done on a per-measure basis. Detect-

ing measures, however, is quite challenging, while detection of beats is a more

well-researched problem. As this thesis targets a scenario of dance music, all mu-

sic can be assumed to be in a 4/4 measure anyway, allowing for an easy mapping

from a beat level segmentation to a measure level one by means of grouping.

Note that the proposed algorithm would also work for other segmentations and

the grouping decision is solely based on the type of music and the corresponding

motions. For the task of beat detection, one could use the sensor data directly

or compute beats from the accompanying audio. While some approaches exist

to perform beat detection on motion data (e.g., the work by Enke [21]), for this

thesis it was decided to precompute beat delimiters from the audio file used. As

beat detection from motion data is less accurate than to do so from audio data,

and as the recording environment and setting can be controlled in this context,

this is the easier and safer alternative.

Detecting beats in audio files is an area already researched extensively (see

e.g., arcitles by Alonso et al. [2] or Goto and Muraoka [26]). For this thesis,

Beatroot1 by Simon Dixon [17] was used. Beatroot takes audio files as input and

generates a list of timestamps denoting the found beat positions. This list is saved

in a raw text file with one timestamp per line. When recording a dance session,

this file can be loaded in order to use the contained beat information. For details

on how the evaluation application handles the beat data, see Chapter 5. Beat

information is mapped to the recording timeline and embedded in the recorded

data to aid in further processing. Note again that the beat detection does not

identify measures but only individual beats. However, as stated above, for dance

1Available at http://www.elec.qmul.ac.uk/people/simond/beatroot (last accessed on
March 22nd 2010)

46 of 117

http://www.elec.qmul.ac.uk/people/simond/beatroot

Chapter 4 Section 4.2. Movement parameters

music and most other forms of popular music, a time signature of 4/4 , also known

as common time, can be assumed and is used here.

4.2 Movement parameters

With the sensor data split into blocks, a measure for block similarity has to be

defined. Before doing so, however, it is useful to define some parameters that

could be used to discern different movements. Parameters could be defined for

the whole block or per sample in a block. To define possible parameters, it is

useful to do so with respect to possible dance moves. For this purpose a number

of moves were selected from the website of Chihoe Szeto2, a professional dancer,

choreographer and instructor. All dance moves are defined for a 4/4 measure and

target club dancing.

“Clown Walk” For this move one starts with putting one heel down in front

on the first beat. On the next half the forward foot is turned outside. At

the second beat a jump alternates the forward foot which is then turned

outside as well at the following half beat. The whole sequence is repeated

to complete one measure. Together with this footwork, the arms swing in

front of the body, converse to the legs (one alternation per beat).

“Out ’n’ Up” Here, one foot is moved to the side on the first beat in a sweeping

motion with the body leaning in the opposite direction. It is brought back

and afterwards lifted up in the next beat period. In the second half of the

measure the movement is repeated with the other foot. On the up motion

the arm of the corresponding other side is brought up in front of the chest,

staying up during the following sweeping motion.

“Bounce” This is a form of rock step. On each beat the body drops down a bit

and straightens up again. When doing so, the drop is slightly faster than

the rebound. When going down, one successively shifts the body to either

side, thus also bending one knee more than the other. Note how the feet

do not move at all. A variation of this move is the “Ghetto Bounce”, that is

simply danced twice as fast.

2http://www.chihoe.com (last accessed on March 5th 2010)

47 of 117

http://www.chihoe.com

Chapter 4 Section 4.3. Block Similarities

“Dip in U” This move is also a form of rock step. One starts in a position leaning

to one side, drops down a bit, shifts to the other side and goes up again.

All of this in a form of a parabola or upper case ‘U’. It can be danced with

one shift per beat or at a slower speed as well. The hip movement can be

accentuated for added effect.

Looking at those moves, some features are readily apparent. For example, in

two of them the feet are never lifted up, while in the other two an energetic lift is

present. The arm movement is either a more horizontal or vertical one, but might

also be left undefined. Accentuation sometimes is a possible differentiator, as

some moves have a more constant flow, while others contain distinctive slow-fast

patterns. Comparing two moves, the “Ghetto Bounce” and the “Out ’n’ Up”, the

first one features small but fast movements while the other one has more spacious

but also slower movements.

In general, energy and spaciousness of a movement seem to differ in those

examples. Concerning axes of motion, most moves have a strong sideways

component with only one move being performed forward. Similarly, an upwards

component is often present, but varies in strength (e.g., jumps vs. bounces).

Looking at the moves, some seem ‘smoother’ than others, as jumping for instance

gives a move a more jagged feel. While the moves in the examples are all rather

energetic, one can imagine more subtle movements being executed along more

subdued portions of a song (a bridge for example sometimes brings upon a

sudden drop in musical intensity).

4.3 Block Similarities

Finding reoccurring patterns ultimately is a problem of finding similar blocks. If

the difference between two blocks is sufficiently small, chances are the movement

in the second one is a reiteration of the first one. There are two problems at hand:

how to determine the similarity of two blocks and what threshold to use when

grouping them together. While the second problem requires some evaluation and

is detailed later on, the first shall be described in this section.

48 of 117

Chapter 4 Section 4.3. Block Similarities

The data inside a block is a multidimensional sequence of samples. For exam-

ple, consider a system using two sensors, each with one three-axis accelerometer

and a three-axis gyroscope. Here, each sample is a 12-dimensional vector of

values. The multi-dimensional nature of the data has to be taken into account

and should be kept in mind when reading subsequent sections of this thesis. From

the raw sensor data in a block, additional meta signals (same temporal domain

and a function of raw sensor data) may be derived as well. With more sensors in

use, the resulting sample dimensionality might be quite high.

Note that at this stage the data is assumed to be normalized. This is necessary,

as the range of gyroscope data for example is much larger than the range of

accelerometer data. To ensure equal influence of all sensor components, the

range of each component should be roughly equal. However, a perfect normaliza-

tion is not possible when processing streaming data. Even when maximal and

minimal values have been determined for one case, as was shown in Table 3.1,

this does not ensure an equal range with a different user or dance. For any given

sequence of sensor values there is also no way to ensure that no future value ever

exceeds the range of that sequence. Hence, an approximation is to be used for

normalization. By recording a test set, an appropriate choice of normalization

van be determined. This is no guarantee that normalized values never go beyond

the [−1, 1] interval but a reasonably good approximation.

There are a number of ways to compare two blocks of motion data. In

Section 2.2 several of them were outlined. For this thesis, two kinds of approaches

were evaluated. In the first one, blocks are compared based on features describing

them. Hence, a transformation has to be defined, that maps whole blocks

to such a feature space. The second approach works directly with the block

data. This allows for a more fine-grained similarity computation, albeit at some

computational cost. Both approaches are described in detail in the following

sections.

4.3.1 Block Definition

For subsequent use, the notion of blocks of motion data is defined below.

49 of 117

Chapter 4 Section 4.3. Block Similarities

Definition. Let B be the symbol for a block of raw sensor values. Two blocks a and

b can be distinguished as Ba and Bb.

Definition. Let |B| be the number of dimensions for a block. For three sensors with

six degrees of freedom (DOF) this would be 18.

Definition. Let Bn be the n-th sensor dimension with 1 ≤ n ≤ |B|. For example this

might be all values for the x-axis of the first accelerometer.

Definition. Let Bnm be the m-th sensor value of the n-th sensor dimension.

Definition. Let B ≡ Rnm be the set of all blocks Bnm.

Features

As noted above, block data is not limited to the raw sensor values. Instead,

higher level features can be computed from the underlying sensor data. Several

such possible features are described in this section. Algorithms determining the

similarity of two blocks can do so by using any combination of raw sensor data

and features.

Feature 1. Instead of raw sensor values, the magnitudes could be used. Given B1, B2
and B3 as the x-, y- and z-axis of the first accelerometer, the magnitude (in euclidean

norm) at position m is defined as:
√
B1m2 + B2m2 + B3m2. The sequence of said

magnitude can be written as: ‖B{1,2,3}‖.

Feature 2. Instead of the absolute magnitude of an accelerometer or gyroscope,

the relative magnitude can be used. This denotes how the magnitude of one sensor

relates to the mean magnitude of all sensor (for both, accelerometer and gyroscope).

Thoughts on Feature Choice

While an evaluation on which features perform better is left for Chapter 6, a

general idea of each features strengths and weaknesses can already be estimated

at this point.

Using the magnitude as base for a feature should be a valid choice, if move-

ment is not constrained to one axis. If a dancer were to jump up and down, for

example, only one axis would be significant and using the magnitude would be a

50 of 117

Chapter 4 Section 4.3. Block Similarities

subpar choice. In general, though, dance movements are not constrained to one

DOF and will also not be axis-aligned. As a general measure of activity, under the

assumption of free motion, the magnitude therefore seems like one appropriate

choice.

The relative magnitude could be useful to determine whether one sensor has

recorded significantly more movement than any other one. If one would flail one’s

arms while standing still this would be the case. However, sensors distributed

over a body are not independent from each other. A movement influencing the

hips will very likely also influence readings in the arms. While this problem also

exists for magnitude measurements, it is less of a problem there, as each sensor

is handled independently. With relative magnitudes, this would lead to rather

similar values which do not lend themselves well as a differentiating trait.

4.3.2 Whole Block Level Similarities

As stated above the movement inside a block can be described via a set of move-

ment features. Based on those, blocks can be compared. Based on the formal

definition of blocks and their features given above, potential block level features

can be defined. Note that a block level feature is different from the features

described earlier. While those were used to define abstractions from the raw

sensor data, they were still in the same temporal domain as the raw sensor data

itself. Block level features describe aspects of a whole block. They are a further

abstraction on top of the previous one.

Block level features are defined as simple statistical mappings for any dimen-

sion of a block. Thus, they can be used for raw sensor data or any derived feature

data.

Block Feature 1. The mean of all sensor values or features of some dimension n:

Bn.

Block Feature 2. The variance of all sensor values or features of some dimension n:

Var(Bn).

Block Feature 3. The maximum or minimum of all sensor values or features of

some dimension n: max(Bn) and min(Bn).

51 of 117

Chapter 4 Section 4.3. Block Similarities

Finally, the block’s data could also be transformed into the frequency domain

for a set of additional features. This is done on a per-dimension basis of the block

and hence only requires a one-dimensional fast Fourier transform (FFT). When

transforming a signal, it is first multiplied with the Hann function, given as

Hann(n) =
1

2

(
1− cos

(
2πn

N − 1

))
.

This prevents spectral leakage in the resulting frequency data. The windowed

signal is also zero padded to ensure that its length is a power of two.

Block Feature 4. Given the FFT of a signal Bn, the dominant frequency can be used

as a block feature.

Block Feature 5. Similarly, the spectral power, as the sum of all FFT coefficients,

could also be used.

Upon closer examination of he given block features, some aspects are no-

ticeable. The dominant frequency block feature, for example, will vary if dance

movements change in speed. If the steps in all movements are synchronized to a

constant meter, this value will also be constant. Thus, this block feature is only of

interest for dance sequences of varying tempi. Similarly, the spectral power is

also a poor feature in those circumstances.

When choosing between mean, variance, maximum and minimum for block

features, some other aspects should be kept in mind. The maximum and mini-

mum of a sequence are easily influenced by outliers and thus might not provide

a reasonably general abstraction. In contrast, both the mean and the variance

are much more descriptive. While the mean itself does not provide a sufficient

measure of activity, it still is a rough estimate thereof. Similarly, the variance

is a good indicator for movement activity (strong movements result in higher

values), but does not signify, whether this activity took place at a higher or lower

level. Both could be used together, but in general the variance seems like the

more promising indicator. Specifically, it allows to distinguish passages with

more energetic movements from passages with less vivid ones. While working

on activity recognition instead of dance pattern recognition, Ravi et al. [53]

also compared different choices for feature vectors. They found that e.g., the

standard deviation of their sensor data was the most important value in their

52 of 117

Chapter 4 Section 4.3. Block Similarities

feature vectors.

When an appropriate set of block features has been chosen, each block can be

mapped to that feature space. For a set of n block features, a feature transform is

thus defined as

f : B → Rn.

This transform is applied to all blocks with the resulting feature vectors being

used to compute a similarity measure between individual blocks. This can be

done using any given distance function.

Distance Function

Assuming an appropriate set of features to be used was chosen, blocks need to

be compared with respect to them. The basic approach here is to use a distance

function, that provides such a similarity measure. Such a function needs to be

defined accordingly as

d : Rn × Rn → R.

Which, for two feature vectors p and q, is given as

d (p,q) = ‖p− q‖.

A number of distance functions could be used. Four possible ones are:

Manhattan distance:

‖p− q‖ =
N∑
i=1

|pi − qi|

Euclidean distance:

‖p− q‖ =

√√√√ N∑
i=1

(pi − qi)
2

Cosine distance:

‖p− q‖ = 1− p · q
‖p‖‖q‖

53 of 117

Chapter 4 Section 4.3. Block Similarities

Mahalanobis distance:

Given the covariance matrix S is defined as

‖p− q‖ =

√
(p− q)T S−1 (p− q).

If the covariance matrix is diagonal this can be simplified to

‖p− q‖ =

√√√√ N∑
i=1

(pi − qi)
2

σ2
i

,

where σn is the standard deviation of the n-th dimension in the dataset.

From the given distance metrics, the Mahalanobis distance could not be used

as the covariance matrix can not be fully determined from streaming data. It

could be an option in more tightly defined settings. In those cases, an appropri-

ate approximation to the covariance matrix could possibly be computed using

sample data. With respect to the three remaining options, Salzberg [56] showed,

for nearest neighbor searches, that the Manhattan distance is inferior to the

euclidean distance, albeit only slightly. Similarly, Qian et al. [51] showed that

the cosine distance and the euclidean distance perform almost equally well in

nearest neighbor searches. Ultimately, the cosine distance was chosen for this

thesis. it is noteworthy, that the cosine distance and not the cosine similarity was

chosen. The cosine similarity values range from 0 to 1 with 0 signifying complete

independence of the two input vectors and 1 an exact match. However, as a

distance measure is required, this range is inverted.

4.3.3 Block Sequence Similarities

While the previous section presented an approach to compare blocks via a set of

block feature descriptors, another possibility is outlined in this section. Instead

of comparing abstracted features for whole blocks, the block data itself can be

used in a comparison. Thus, such an algorithm should be able to determine

the similarity of any two given multi-dimensional time series. However, before

dealing with that algorithm one should reexamine the sequences to compare.

As noted in Section 4.3.1, each block can be seen as a collection of data

sequences – one for each signal dimension. Additionally some features on such

data, like the accelerator magnitude or the relative gyroscope magnitude, were

54 of 117

Chapter 4 Section 4.3. Block Similarities

a

b

Time

Figure 4.1: Dynamic time warping from signal b to signal a, showing substitution,
deletion and insertion

defined as well. Thus, a block of raw data could e.g., be mapped to a block of

magnitude data or instead of all sensors in a block, only the first two could be

used. In general, a transform is applied that might change the dimensionality of

the block data:

f : B→ B

f (Ba) = Bb where |Ba| 6= |Bb| ∨ |Ba| = |Bb|

This block transformation is applied to each block, which are then compared

pairwise using the dynamic time warping (DTW) algorithm [54], described below.

For each two compared blocks, the DTW algorithm yields a distance measure

which is subsequently used for classification. As a normalized distance function is

used (for details see text on DTW below), the resulting distance values will range

from 0 (the same) to 1 (independent).

Dynamic Time Warping

In Dynamic Time Warping, a mapping from an input sequence to a given sequence

is found that minimizes the distance between them. The sequences do not need

to be of equal length, as DTW corrects for differences in speed, but need to be

of the same dimensionality. Running the DTW algorithm on two sequences will

55 of 117

Chapter 4 Section 4.3. Block Similarities

yield two measures: a distance between those two sequences, and a so-called

warp path that describes the best possible alignment of the two sequences. The

best possible alignment is that alignment, which minimizes the overall distance

between the two sequences.

Note that the DTW definition given in this thesis is based on an article by

Salvador and Chan [55]. However, some slight notational changes have been

made. When defining DTW, it is helpful to use one-dimensional sequences as

examples. Let a and b be two such given sequences, whose similarity we would

like to determine.

f(x)

x

f(x)

xSignal a Signal b

It is readily apparent, that those two sequences are very similar. Sequence b

lags behind in the beginning, but catches up later on. Compensating for such

small timing differences is one of the beneficial properties of DTW. This is done

by warping sequence b to better fit sequence a. Formally, sequences a and b of

lengths |a| and |b| are defined as:

a = a1, a2, . . . , ai, . . . , a|a|

b = b1, b2, . . . , bj, . . . , b|b|

Given those two sequences, a warp path W is to be determined, that describes

how sequence b maps to sequence a.

W = w1, w2, . . . , wK max(|a|, |b|) ≤ K < |a|+ |b|

wk = (i, j) (1 ≤ i ≤ |a|) ∧ (1 ≤ j ≤ |b|)

The beginning and the end of a warp path are always given, as the beginning and

end of each sequence. Warping is only performed inside that window.

w1 = (1, 1)

56 of 117

Chapter 4 Section 4.3. Block Similarities

wK = (|a|, |b|)

Furthermore, a warp path is required to be monotonically increasing and to only

be increasing in steps of size one (no part of a sequence may be skipped).

wk = (i, j), wk+1 = (i′, j′) i ≤ i′ ≤ i+ 1 ∧ j ≤ j′ ≤ i+ 1

An overall distance between two sequences can be computed using the warp path.

Given a distance function d to use (see Section 4.3.2), this is defined as:

‖W‖ =
K∑
k=1

d
(
awki

,bwkj

)
For normalization purposes, this can be adapted to take into account the length

of the warp path.

Normalize (‖W‖) =
‖W‖
|W |

To find the warp path that minimizes the overall distance, a dynamic pro-

gramming approach is taken. In a naive implementation a cost matrix D of size

|a| × |b| is constructed and incrementally filled. Each cell in the cost matrix

contains the aggregate cost of the best warp path up to this point. The algorithm

starts at D1,1, the cell denoting the distance between the first element of the two

sequences, and terminates at D|a|,|b|, the end of both sequences. Filling the cells

of the cost matrix is done in an incremental fashion on a column by column basis.

Each new cell can be seen as an extension of the underlying warp path and three

different cases can be distinguished:

Deletion:

wk = (i, j), wk+1 = (i, j + 1)

Substitution:

wk = (i, j), wk+1 = (i+ 1, j + 1)

Insertion:

wk = (i, j), wk+1 = (i+ 1, j)

The effect of these operations is also shown in Figure 4.1. When computing

the value of a new cell, that operation is chosen, which least increases the total

57 of 117

Chapter 4 Section 4.3. Block Similarities

 3

evaluate other existing approximate DTW algorithms, and
compare their accuracy on a large and diverse group of time series
data sets.

Organization. The next section describes the dynamic time
warping algorithm and existing approaches to speed it up.
Section 3 provides a detailed explanation of our FastDTW
algorithm, and a theoretical analysis of its time and space
complexity. Section 4 discusses empirical evaluations of the
FastDTW algorithm based on accuracy and time complexity; and
Section 5 summarizes our study.

2. RELATED WORK

2.1 Dynamic Time Warping (DTW)
A distance measurement between time series is needed to
determine similarity between time series and for time series
classification. Euclidean distance is one such distance
measurement that can be used. The Euclidian distance between
two time series is simply the sum of the squared distances from
each nth point in one time series to the nth point in the other. The
main disadvantage of using Euclidean distance for time series data
is that its results are very unintuitive. If two time series are
identical, but one is shifted slightly along the time axis, then
Euclidean distance may consider them to be very different from
each other. Dynamic time warping (DTW) was introduced [11] to
overcome this limitation and give intuitive distance measurements
between time series by ignoring both global and local shifts in the
time dimension.

Problem Formulation. The dynamic time warping problem is
stated as follows: Given two time series X, and Y, of lengths |X|
and |Y|,

Yj

Xi

yyyyY

xxxxX

,,,,,

,,,,,

21

21

KK

KK

=

=

construct a warp path W

YXKYXwwwW K +<≤=),max(,,, 21 K

where K is the length of the warp path and the kth element of the
warp path is

),(jiwk =

where i is an index from time series X, and j is an index from time
series Y. The warp path must start at the beginning of each time
series at w1 = (1, 1) and finish at the end of both time series at wK

= (|X|, |Y|). This ensures that every index of both time series is
used in the warp path. There is also a constraint on the warp path
that forces i and j to be monotonically increasing in the warp path,
which is why the lines representing the warp path in Figure 1 do
not overlap. Every index of each time series must be used. Stated
more formally:

1,1),(),,(1 +≤′≤+≤′≤′′== + jjjiiijiwjiw kk

The optimal warp is the minimum-distance warp path, where the
distance of a warp path W is

∑
=

=
K

k
kjki wwDistWDist

1

),()(

Dist(W) is the distance of warp path W, and Dist(wki, wkj) is the
distance between the two data points (one from X and one from Y)
at the indexes contained in the kth element of the warp path.

DTW Algorithm. A dynamic programming approach is used to
find this minimum-distance warp path. Instead of attempting to
solve the entire problem all at once, solutions to sub-problems
(portions of the time series) are found, and used to repeatedly find
solutions to a slightly larger problem until the solution is found
for the entire time series. A two-dimensional |X| by |Y| cost matrix
D, is constructed where the value at D(i, j) is the minimum-
distance warp path that can be constructed from the two time
series X’=x1,...,xi and Y’=y1,...,yj. The value at D(|X|, |Y|) will
contain the minimum-distance warp path between time series X
and Y. Both axes of the cost matrix represent time. The x-axis is
the time of time series X, and the y-axis is the time of time series
Y. Figure 2 shows an example of a cost matrix and a minimum-
distance warp path traced through it from D(1, 1) to D(|X|, |Y|).

1

1

|X|

|Y|

i

j

Time Series X

T
im

e
S

er
ie

s
Y

T
im

e

Time Series X

Time

Figure 2. A cost matrix with the minimum-distance warp path
traced through it.

The cost matrix and warp path in Figure 2 are for the same two
time series shown in Figure 1. The warp path is W = {(1,1), (2,1),
(3,1), (4,2), (5,3), (6,4), (7,5), (8,6), (9,7), (9,8), (9,9), (9,10),
(10,11), (10,12), (11,13), (12,14), (13,15), (14,15), (15,15),
(16,16)}. If the warp path passes through a cell D(i, j) in the cost
matrix, it means that the ith point in time series X is warped to the
jth point in time series Y. Notice that where there are vertical
sections of the warp path, a single point in time series X is warped
to multiple points in time series Y, and the opposite is also true
where the warp path is a horizontal line. Since a single point may
map to multiple points in the other time series, the time series do
not need to be of equal length. If X and Y were identical time
series, the warp path through the matrix would be a straight
diagonal line.

Figure 4.2: Two sequences and their minimum-distance warp path (from Salvador
and Chan [55])

58 of 117

Chapter 4 Section 4.3. Block Similarities

warp path cost. For the cell Di,j and distance function d (see above), this is

formally given as:

Di,j = d (ai,bj) + min (Di−1,j, Di,j−1, Di−1,j−1)

After the cost matrix has been computed, the actual warp path can be deter-

mined by a reverse search, starting at D|a|,|b|. At every cell, the predecessor with

the lowest cost is chosen and added to the warp path until the beginning of the

cost matrix is reached. An example for two sequences and the resulting warp

path is shown in Figure 4.2.

While the above definitions and examples were given for one-dimensional

sequences, no changes have to be made to the algorithm to work on multi-

dimensional ones. Only the distance function d has to be able to handle multi-

dimensional input.

To lower the computational cost of DTW, constraints (see e.g., an article

by Lemire [38]) can be used to restrict the number of cells that are calculated.

Research by Ratanamahatana and Keogh [52] has provided evidence, that a lack

of constraints does not improve on DTW results and accuracy already peaks in

severely constraint cases. They furthermore showed, that total computational

cost of DTW when using constraints is essentially O
(
n
)
, compared to the O

(
n2
)

complexity of a naive implementation. Note that the space cost for the cost matrix

can be reduced to the cost of two columns if the warp path is not needed. In

that case only the current and last column are kept in memory, which is sufficient

to compute the total warp path cost, but does not allow the reverse search to

determine the mapping itself.

FastDTW

For this thesis an improvement on DTW by Salvador and Chan [55] (see Fig-

ure 4.3, for an illustration) was used. The FastDTW algorithm speeds up DTW

computations, by iteratively computing the warp path for a lower resolution,

projecting it to a higher resolution and refining it. Lower resolution sequences are

computed by averaging samples in a higher resolution, each coarsening reducing

the number of data points by a factor of two. In the coarsest resolution the warp

59 of 117

Chapter 4 Section 4.3. Block Similarities

 5

The result is that DTW is sped up by a large constant factor, but
the algorithm still runs in O(N2) time and space. Obviously, the
warp distance that is calculated between the two time series
becomes increasingly inaccurate as the level of abstraction
increases. Projecting the low resolution warp path to full
resolution usually creates a warp path that is far from optimal
because even IF the optimal warp path actually passes through the
low-resolution cell, projecting the warp path to the higher
resolution ignores local variations in the warp path that can be
very significant.

1/51/1 1/1

Figure 5. Speeding up DTW by Data Abstraction.

Indexing uses lower-bounding functions to prune out the number
of times DTW needs to be run for certain tasks such as clustering
a set of time series or finding the time series that is most similar to
a given time series [6][10]. Indexing significantly speeds up
many DTW applications by reducing the number of times DTW is
run, but does not speed up the actual DTW algorithm.

Our FastDTW algorithm uses ideas from both the constraints and
Data Abstraction categories. Using a combination of both
overcomes many limitations of using either method individually,
and yields an algorithm that is O(N) in both time and space.

3. APPROACH
The multilevel approach that FastDTW uses is inspired by the
multilevel approach used for graph bisection [5]. Graph bisection
is the task of splitting a graph into roughly equal portions, such
that the sum of the edges that would be broken is as small as
possible. Efficient and accurate algorithms exist for small graphs,
but for large graphs, the solutions found are typically far from
optimal. A multilevel approach can be used to find the optimal
solution for a small graph, and then repeatedly expand the graph
and “fix” the pre-existing solution for the slightly larger problem.
A multilevel approach works well if a large problem is difficult to
solve all at once, but partial solutions can effectively be refined at
different levels of resolution. The dynamic time warping problem
can also be solved with a multilevel approach. Our FastDTW
algorithm uses the multilevel approach and is able to find an
accurate warp path in linear time and space.

3.1 FastDTW Algorithm
The FastDTW algorithm uses a multilevel approach with three
key operations:

1) Coarsening – Shrink a time series into a smaller time
series that represents the same curve as accurately as
possible with fewer data points.

2) Projection – Find a minimum-distance warp path at a
lower resolution, and use that warp path as an initial

guess for a higher resolution’s minimum-distance warp
path.

3) Refinement – Refine the warp path projected from a
lower resolution through local adjustments of the warp
path.

Coarsening reduces the size (or resolution) of a time series by
averaging adjacent pairs of points. The resulting time series is a
factor of two smaller than the original time series. Coarsening is
run several times to produce many different resolutions of the
time series. Projection takes a warp path calculated at a lower
resolution and determines what cells in the next higher resolution
time series the warp path passes through. Since the resolution is
increasing by a factor of two, a single point in the low-resolution
warp path will map to at least four points at the higher resolution
(possibly >4 if |X|≠|Y|). This projected path is then used as a
heuristic during solution refinement to find a warp path at the
higher resolution. Refinement finds the optimal warp path in the
neighborhood of the projected path, where the size of the
neighborhood is controlled by the radius parameter.

Dynamic time warping is an O(N2) algorithm because every cell in
the cost matrix must be filled to ensure an optimal answer is
found, and the size of the matrix grows quadratically with the
length of the time series. In the multilevel approach, the cost
matrix is only filled in the neighborhood of the path projected
from the previous resolution. Since the length of the warp path
grows linearly with the length of the input time series, the
multilevel approach is an O(N) algorithm.

1/8 1/4 1/2 1/1

Figure 6. The four different resolutions evaluated during a
complete run of the FastDTW algorithm.

The FastDTW algorithm first uses coarsening to create all of the
resolutions that will be evaluated. Figure 6 shows four
resolutions that are created when running the FastDTW algorithm
on the time series that were previously used in Figures 1 and 2.
DTW is run to find the optimal warp path for the lowest
resolution time series. This lowest resolution warp path is shown
in the left of Figure 6. After the warp path is found for the lowest
resolution, it is projected to the next higher resolution. In Figure
6, the projection of the warp path from a resolution of 1/8 is
shown as the heavily shaded cells at 1/4 resolution.

To refine the projected path, a constrained DTW algorithm is run
with the very specific constraint that only cells in the projected
warp path are evaluated. This will find the optimal warp path
through the area of the warp path that was projected from the
lower resolution. However, the entire optimal warp path may not
be contained within projected path. To increase the chances of
finding the optimal solution, there is a radius parameter that
controls the additional number of cells on each side of the
projected path that will also be evaluated when refining the warp
path. In Figure 6, the radius parameter is set to 1. The cells
included during warp path refinement due to the radius are lightly

Figure 4.3: Speeding up the warp path computation using multiple resolutions
(from Salvador and Chan [55])

 5

The result is that DTW is sped up by a large constant factor, but
the algorithm still runs in O(N2) time and space. Obviously, the
warp distance that is calculated between the two time series
becomes increasingly inaccurate as the level of abstraction
increases. Projecting the low resolution warp path to full
resolution usually creates a warp path that is far from optimal
because even IF the optimal warp path actually passes through the
low-resolution cell, projecting the warp path to the higher
resolution ignores local variations in the warp path that can be
very significant.

1/51/1 1/1

Figure 5. Speeding up DTW by Data Abstraction.

Indexing uses lower-bounding functions to prune out the number
of times DTW needs to be run for certain tasks such as clustering
a set of time series or finding the time series that is most similar to
a given time series [6][10]. Indexing significantly speeds up
many DTW applications by reducing the number of times DTW is
run, but does not speed up the actual DTW algorithm.

Our FastDTW algorithm uses ideas from both the constraints and
Data Abstraction categories. Using a combination of both
overcomes many limitations of using either method individually,
and yields an algorithm that is O(N) in both time and space.

3. APPROACH
The multilevel approach that FastDTW uses is inspired by the
multilevel approach used for graph bisection [5]. Graph bisection
is the task of splitting a graph into roughly equal portions, such
that the sum of the edges that would be broken is as small as
possible. Efficient and accurate algorithms exist for small graphs,
but for large graphs, the solutions found are typically far from
optimal. A multilevel approach can be used to find the optimal
solution for a small graph, and then repeatedly expand the graph
and “fix” the pre-existing solution for the slightly larger problem.
A multilevel approach works well if a large problem is difficult to
solve all at once, but partial solutions can effectively be refined at
different levels of resolution. The dynamic time warping problem
can also be solved with a multilevel approach. Our FastDTW
algorithm uses the multilevel approach and is able to find an
accurate warp path in linear time and space.

3.1 FastDTW Algorithm
The FastDTW algorithm uses a multilevel approach with three
key operations:

1) Coarsening – Shrink a time series into a smaller time
series that represents the same curve as accurately as
possible with fewer data points.

2) Projection – Find a minimum-distance warp path at a
lower resolution, and use that warp path as an initial

guess for a higher resolution’s minimum-distance warp
path.

3) Refinement – Refine the warp path projected from a
lower resolution through local adjustments of the warp
path.

Coarsening reduces the size (or resolution) of a time series by
averaging adjacent pairs of points. The resulting time series is a
factor of two smaller than the original time series. Coarsening is
run several times to produce many different resolutions of the
time series. Projection takes a warp path calculated at a lower
resolution and determines what cells in the next higher resolution
time series the warp path passes through. Since the resolution is
increasing by a factor of two, a single point in the low-resolution
warp path will map to at least four points at the higher resolution
(possibly >4 if |X|≠|Y|). This projected path is then used as a
heuristic during solution refinement to find a warp path at the
higher resolution. Refinement finds the optimal warp path in the
neighborhood of the projected path, where the size of the
neighborhood is controlled by the radius parameter.

Dynamic time warping is an O(N2) algorithm because every cell in
the cost matrix must be filled to ensure an optimal answer is
found, and the size of the matrix grows quadratically with the
length of the time series. In the multilevel approach, the cost
matrix is only filled in the neighborhood of the path projected
from the previous resolution. Since the length of the warp path
grows linearly with the length of the input time series, the
multilevel approach is an O(N) algorithm.

1/8 1/4 1/2 1/1

Figure 6. The four different resolutions evaluated during a
complete run of the FastDTW algorithm.

The FastDTW algorithm first uses coarsening to create all of the
resolutions that will be evaluated. Figure 6 shows four
resolutions that are created when running the FastDTW algorithm
on the time series that were previously used in Figures 1 and 2.
DTW is run to find the optimal warp path for the lowest
resolution time series. This lowest resolution warp path is shown
in the left of Figure 6. After the warp path is found for the lowest
resolution, it is projected to the next higher resolution. In Figure
6, the projection of the warp path from a resolution of 1/8 is
shown as the heavily shaded cells at 1/4 resolution.

To refine the projected path, a constrained DTW algorithm is run
with the very specific constraint that only cells in the projected
warp path are evaluated. This will find the optimal warp path
through the area of the warp path that was projected from the
lower resolution. However, the entire optimal warp path may not
be contained within projected path. To increase the chances of
finding the optimal solution, there is a radius parameter that
controls the additional number of cells on each side of the
projected path that will also be evaluated when refining the warp
path. In Figure 6, the radius parameter is set to 1. The cells
included during warp path refinement due to the radius are lightly

Figure 4.4: Successive refinement of the warp path (from Salvador and Chan
[55]). Cells shaded in dark gray are covered by the coarse resolution warp path
and are included in the refinement. Light gray colored cells are also included as
they lie in a given radius around the warp path.

path is computed equivalent to a regular DTW implementation. When projecting

that coarse path to a higher resolution, a more restricted DTW is run. The number

of cells required for refinement is equivalent to all cells covered by the path (with

a downsampling factor of two in both dimensions this equals four samples per

path segment) plus an added boundary of cells in a given radius around the path

(see Figure 4.4).

Using that multilevel approach, FastDTW works in O
(
n
)
, similar to constrained

versions of DTW. Due to the nature of the algorithm a certain level of error is

induced. This is primarily dependent on the radius used. Analysis by Salvador

and Chan showed, that for higher radii the error converges to 0. Furthermore, this

convergence is significantly faster than in constraint based DTW implementations.

An analysis of appropriate FastDTW radii for the movement data used here, is

given in Chapter 6.

60 of 117

Chapter 4 Section 4.4. Classification

4.4 Classification

In the previous section two algorithms were presented that compute a distance

measure for blocks of motion data. Now, further processing steps have to be

taken to classify blocks into distinct groups. As no a priori knowledge on possible

patterns is given, classification is unsupervised and solely depends on statistical

information. Furthermore, classification should work in real-time on streams

of incoming motion data blocks. Unfortunately, having no set of labels given

and the requirement to assign new labels to blocks as they come in, imposes

severe restrictions on the classification. For example, a simple k-nearest neighbors

(k-NN) clustering would not work, as the number of desired clusters k is not

known. Changing assigned labels later on is also undesirable. Thus, algorithms

determining clusters reexamining the classes for all available data from the set

do not work. An algorithm is needed that preserves previous class assignments

and classifies new blocks based on previous classification choices.

For the purposes of this thesis, a threshold clustering approach is proposed,

that assigns class labels on-the-fly and unsupervised. Assigned class labels are

immutable as demanded above. In this approach, an input stream of motion data

blocks shall be modeled as a sequence S, with

S = (s1, s2, s3, . . .) with sn ∈ B.

Individual clusters are modeled as sets of blocks C, while all found clusters go

into sequence L. A cluster’s index in this sequence also serves as class label.

For the first incoming block S(1), there is no decision to be made. It will be

assigned a new class label, thus resulting in

L = ({S (1)}) .

For subsequent blocks, the best matching preexisting cluster has to be deter-

mined. This assumes a distance function dist is defined, which for the purposes

of this thesis will be one of the two above-described ones. In addition to that

function, a threshold t has to be provided as well. The distance from a new block

S(i) to an already found cluster C in L, is defined as the average distance to C ’s

61 of 117

Chapter 4 Section 4.4. Classification

members.

clusterDistance (S(i), C) =
1

|C|
∑
c∈C

dist (S (i) , c)

The best match of a new block is hence given as the cluster with the smallest

distance to, from all available clusters.

bestMatch (S (i) , L) = min {clusterDistance (S (i) , Ln) : 1 ≤ n ≤ |L|}

The identifier and the distance to that best match shall be denoted as

bestMatch (S (i) , L)ID

bestMatch (S (i) , L)dist .

Based on the given threshold t, a new block is considered to belong to the

best match’s cluster if the distance between them is lower than t. If that is not

the case, a new cluster is created.

assign (S(i), L) =

{
L|L|+1 = {S(i)} if bestMatch (S(i), L)dist > t

LbestMatch(S(i),L)ID
∪ S(i) if bestMatch (S(i), L)dist ≤ t

The threshold has to be chosen carefully for good results. If it is set too low,

all blocks are considered unrelated and are assigned their own class. Conversely,

a threshold value that is too high, leads to undesired mashing of blocks that

should have been distinguished. The threshold value is dependent on the moves

used and the features chosen. In Chapter 6, results for different threshold values

are shown in detail.

62 of 117

Chapter 5

Evaluation

When evaluating the system, a number of components need to be in place. First

of all, a client application has to be available to interface with the wearable

sensor system and collect the data. One option then would be to analyze the

data while it is recorded. However, it is desirable to decouple recording and

analyzing, to allow for more flexibility. Especially exploring the parameter space

is not viable in real-time. Thus, analyzing the data requires a second application

that is able to run a set of tests on the recorded data. For exchange between those

two applications, a data format needs to be specified.

To be able to test a dance movement classifier, the recorded data needs to

have class labels. While labeling data manually after recording is possible, it

would be a tedious and error-prone process. Instead, it is preferable to do so

automatically. For this purpose, a sequence of dance movements is defined before

recording and used to provide instructions to participants and in evaluating the

classifier. To do so, a file format for dance move sequences has to be defined as

well. Also, the recording application has to be able to use that data to generate

instructions for participants. These instructions need to be synchronized to the

audio and displayed in an easily consumable way.

In general, all time critical parts of the system should be highly synchronized

when recording. For example, the timestamps assigned to the incoming sensor

data need to be accurate. They also need to be right in respect to the audio

playback. As described in Section 4.1, beat locations are precomputed and those

timestamps need to be taken into account as well. The recording application

has to be able to keep those three time scales in sync and should minimize any

delays.

63

Chapter 5 Section 5.1. Recording Application

MundoCore

PC

Windows

Windows

Presentation

Foundation

Common Language RuntimeBASS

Utility

Library

Native Interop

Library

Client Application

Native Code Managed Code Native & Managed Code

Figure 5.1: Client Software Stack

Finally, the evaluation application should be able to efficiently run a set of

tests on the recorded data. Ideally tests can be defined without recompilation

and in a convenient way. In this chapter, the implementations for all parts of that

system are described.

5.1 Recording Application

Recording a dance session is a critical part of the evaluation. The data collected

here will be further analyzed, which requires that possible sources of error in

the recording process are minimized. This especially relates to time-critical

components and user errors. This section first details how those time-critical

components were built and afterwards describes how recording works and what

measures were taken to minimize sources for user error.

5.1.1 Time Critical Modules

When recording, it is important to keep track of timing and any extensive delays

in critical parts of the application could skew the results. Therefore, all time

critical work is done in native code. For this purpose, a C++ class library was

64 of 117

Chapter 5 Section 5.1. Recording Application

implemented to perform critical operations in native code while being accessible

by managed code. It handles audio playback through the BASS1 audio library

(available for Windows and Mac OSX and free for non-commercial use) and also

links to MundoCore (see Section 3.3).

The beat data, described in Section 4.1, is loaded by this library and used

to generate events during audio playback. The BASS library allows for setting

callbacks on audio streams, which is used to set callbacks at every beat’s position.

However, as the audio pipeline introduces some delay, some time passes between

a stream being instructed to play and the sound being audible on the speakers.

The BASS library allows to query for the average duration of that delay. This

value is added to the beat timestamps when setting the callback times. Thus, a

callback is triggered not when a sample at a beat’s time is decoded but when it is

actually output on the speakers. Each callback triggered calls a delegate function,

previously passed to the audio player instance, and passes on a timestamp for

the current beat. This timestamp is not based on the beat definition but is using

a high accuracy timer singleton inside the library. In that way beat times and

sensor times are using the same timescale.

To interface with the wearable system, MundoCore is used on the client side

as well. For this purpose, a MundoCore service is implemented that subscribes

and publishes on the same channel as the embedded system. Thus, these two

components of the system do not need to be directly coupled but only need to

know a common channel name. The client can send messages via that channel

to start or stop recording on the embedded system. When recording is started,

sensor data is also coming in on that same channel. As described in Section 3.3,

sensor data is transmitted as a binary blob. On the client, that data is unpacked

and transfered from its native array format into a managed collection. Also, a

timestamp is assigned the moment that data is coming in, using the same timer

singleton as the beat events. In order to not block the MundoCore service, sensor

data is put into a thread-safe queue before further processing in the recording

application. As GUI updates triggered by new sensor data can take some time,

decoupling the data collection from the GUI is preferable. Otherwise, the data

1Available at http://www.un4seen.com (last accessed on March 22nd 2010)

65 of 117

http://www.un4seen.com

Chapter 5 Section 5.1. Recording Application

Figure 5.2: Client Software showing a recorded session

receiving thread might stall and incoming sensor data would not be handled

immediately.

5.1.2 User Interaction

When recording, participants have to be instructed on what moves to perform

at every given time. This information needs to be highly visible and informative.

In combination with instructions on the current moves to dance, it is desirable

to provide instructions on the next moves as well. This eases transitions to new

segments and prepares participants for upcoming changes in style. One possibility

would be to simply identify the upcoming moves. However, without a countdown

timer, showing when that change will occur, this information is not sufficiently

useful. When providing timing information, it is advisable to inform participants

of the current progress also; Hence, making it clear how much time is remaining.

Furthermore, some feedback on the status of the recording is desirable as well.

This primarily includes feedback whether the data collection is working properly.

66 of 117

Chapter 5 Section 5.1. Recording Application

Figure 5.3: Client Software during a recording session

Additional data, like beat information or segmentation could be provided as well.

The actual application used in recording a dance session is shown in Fig-

ure 5.2. Additionally, Figure 5.3 shows the application during a recording session.

It contains three different areas. In the upper area of the window is a graph

showing the recorded sensor values. A tab control is used with one tab for each

available sensor. A separate graph for accelerometer and gyroscope data is shown

inside the tab control. When recording, this graph is updating live to show the

sensor values currently coming in. In addition to the sensor values, beats are

denoted in the graph with pink vertical bars and time labels are added at second

intervals as well. If the application is not currently recording, the graph can be

scrolled using buttons below it. There is also an option to draw point markers to

better identify the samples in the graph. This is useful in detecting whether the

time interval between samples is indeed constant. If markers are unevenly spaced

in the graph, this could, for example, indicate connectivity issues. In general, this

area provides feedback as to whether sensor data is recorded correctly.

67 of 117

Chapter 5 Section 5.1. Recording Application

In the area in the middle, instructions are provided to participants when

dancing. On the left, a class identifier is shown to the participant. This is done

to provide a more easily recognizable sign for the current pattern. In addition

to the label, each class is also assigned a color which is shown in this area as

well. Taking colors across the entire hue range makes sure class color identifiers

are distinguishable. In addition to this, the instructions for the current steps

and for the upcoming ones are shown. Next to the upcoming steps label, the

participant is also informed about how many more beats the current step pattern

will remain active. In this way, participants have an expectation of when to switch

dance movements. Furthermore, the bar in the middle fills up as the recording

progresses, giving participants a rough idea of how much longer a recording is

going to last.

The bottom of the window contains several buttons to control the application.

This includes saving recorded sensor data or loading it again. By pressing the

button in the middle, the embedded software on the Gumstix (see Section 3.2.3)

is instructed to either start transmitting sensor values or to stop doing so. Finally,

the button on the left starts playing the audio file or stops playback. While

recording, a glowing orb next to that button is pulsating in sync with the beats.

To ensure a smooth start of a recording, a lead-in is added to the audio. When

the play button is pressed, the music does not start right away, but a click track

will count down one full measure. The intervals in the click track are interpolated

from the beat information and hence based on the song playing.

5.1.3 Dance Description Format

As described earlier, the dance movements to be danced have to be predefined to

enable an evaluation of the proposed algorithm. In the previous section, it was

also outlined how participants are informed about what to do when recording.

In this section, the .steps file format, which can be used to define those instruc-

tions, will be described. In this format, a beat level movement description is used.

However, movements can be defined that span more than one beat. Thus, the

format can be adapted to most dance scenarios. Note that this is not a full dance

movement description, like the Laban [65] or Benesh [8] notation formats. The

purpose of the .steps format is to describe sequences of movements but not the

68 of 117

Chapter 5 Section 5.1. Recording Application

movements themselves. Individual movements are only assigned instructional la-

bels. Those can either be read and acted out directly by participants or explained

and shown to participants beforehand.

Fields in a .steps file are identified by the first keyword on the line. In

general, a .steps file contains a header and a body. However, they are not

specifically denoted and in fact no strict order of definition has to be adhered to.

All class identifiers are positive integers excluding zero. Macros can be defined

and use string identifiers instead of numerals. Any line not starting with any of

the keywords is considered a comment. Currently available keywords are:�
CLASS , SUBCLASSES , STEP , STEPS , DEF , ENDDEF , PAT� �

The CLASS keyword is used to define new dance classes. If needed, those can be

further broken down as will be described. For each class, a numerical identifier

and a textual description need to be provided. Such a definition might look like

this:�
CLASS 1 Side s t ep s with no arm movement

CLASS 2 Rock s t ep s sideways without arm movement

CLASS 3 Jumping around� �
For some movements, it might be interesting to define submovements. For

example, in cha-cha-cha the base step is defined over two measures and is

subdivided into two steps (starting on the second beat) followed by a chasse over

two beats and another two steps and a second chasse to return to the starting

position. Overall, the movement spans eight beats. As can be seen, the base

step class could be split into four distinct subclasses. While one could argue

that the cha-cha-cha base step only contains two different subpatterns, those are

executed in different directions and thus result in differing steps. The .steps

format allows definition of such subclasses via the SUBCLASSES keyword. If used,

one first provides the identifier of the class to further specify, followed by a list of

new movement identifiers. For example, if class 1 can be further subdivided in

four distinct subclasses one would write:�
SUBCLASSES 1 101 102 103 104� �

69 of 117

Chapter 5 Section 5.1. Recording Application

The STEP and STEPS keywords define actual steps to be danced. For those two

commands the order in which they are executed is important. While they do

not all need to be specified in one block, they are parsed top to bottom in the

.steps file. The STEP keyword only defines which class to use in one beat period.

If a movement stretches over multiple beat periods, the STEPS keyword can be

used with an additional length parameter added after the class parameter. The

step description is independent of time signature and solely defined on the beat

level. Thus, a movement spanning an entire 4/4 measure, for example, has to be

defined with a step length of 4. An example of a movement over two measures is

given below.�
STEP 1

STEPS 2 3

STEP 3

STEPS 1 3� �
Some movement sequences might be reoccurring throughout a song. The DEF,

ENDDEF and PAT keywords are used to define such macros and add them to the step

sequence. The DEF and ENDDEF keywords act as block delimiters. When starting a

block, a string identifier has to be added after the DEF keyword. This identifier

is later used by the PAT keyword. Inside the block, steps can be defined for later

use. When a PAT keyword is read later, the defined macro is added at that position.

Inside a block, STEP and STEPS commands can be used to define the actual moves

for it. It is also possible to use already defined macros in a macro definition via

the PAT keyword. In the example below, an eight measure long macro for the

chorus is defined and inserted.�
DEF CHORUSPATTERN

STEPS 2 32

ENDDEF

PAT CHORUSPATTERN� �
An utility library provides functions to load .steps files. When loading the

library provides options to already transform the step data before passing it on

to the caller. For example instead of a list of class identifiers a list of subclass

70 of 117

Chapter 5 Section 5.1. Recording Application

identifiers can be obtained. It is also possible to get a list of class identifiers per

measure and not per beat.

5.1.4 Recorded Data Exchange Format

�
<!ELEMENT t g f (comment? , sync+)>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT sync (names , data)>

<!ELEMENT names (name+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT data (#PCDATA)>� �
Type Definition 1: DTD for recorded data exchange format

As the recorded data has to be processed by another application, it has to

be saved to disk in some format. In general, it is considered useful to be able

to revisit previous recordings. For this purpose, the .tgf format is used. This

extensible markup language (XML) based format has been defined by Had-

jakos for a previous project utilizing the sensors and is inherited unchanged. A

document type definition (DTD) for such a .tgf file is shown in Type Definition 1.

In each .tgf file, a number of sync blocks can be included. Each sync block

denotes a collection of values which share a common clock. For example, a .tgf

could include one block for sensor data and another one for metronome data.

The actual data goes into data blocks inside the sync blocks. It is not described

in XML form, but as a block of text with one sample set per line (for a three-

axis accelerometer this would come out to four values, including a timestamp).

The individual values are separated by whitespace and saved as textual floating

point representations. Names for each data column are given in a sync’s names

block. By convention the timestamp should be the last column of each line of data.

A .tgf file can be used to save recorded data from multiple participants and is

also used to save beat data as well. While beat timestamps are already defined in

another format (see Section 4.1), those timestamps are relative to the beginning

of the song they were derived from. While a .tgf allows multiple sync blocks,

each with a clock of its own, they are synchronized. A timestamp in one block

also is a valid timestamp for any other clock. This allows for different sample

71 of 117

Chapter 5 Section 5.2. Evaluation Application

timestamps for different blocks, but ensures that the sample timestamps share

a common time base. The beat data is mapped to the recording timeline, as

mentioned earlier, and included in the .tgf as well.

5.2 Evaluation Application

When evaluating, the recorded data is put through a number of tests to deter-

mine the quality of the classifier. When running a test, the question is how to

determine the quality of the classifier. When the possible classes are known

before classification, this is easy. In that case, each class classified as a different

one is an error. However, here the classifier has no class definitions available

and assigns class labels on its own. As described earlier, the classes for the in-

tended sequence are available as well in the .steps format. However, those class

identifiers are a completely different set than the assigned ones. The assump-

tion that identifiers can be matched using simple equality therefore does not hold.

In this section, one approach is defined that maps identifiers from one space

to another in a best-fit manner. This enables the determination of a classifier’s

accuracy. Furthermore, as it is desirable to define tests outside of the evaluation

application’s source code, a test format was defined. This XML format, which is

loaded by this application at runtime, is described in this section as well.

5.2.1 Test Definition

The evaluation software will load an XML file defining all tests when running.

This makes adapting tests easier and allows for running new tests without recom-

piling the evaluation application. For each test, it has to be defined which files

to use, what features to test and with which parameters to do so. A DTD for the

XML format used for this purpose, is shown in Type Definition 2.

As can be seen, three levels of grouping are available. The whole test set

contains a number of test groups. Those groups themselves are nothing but a

convenient way to easily exclude a number of tests at once. Each test inside such

a group then is defined for one input file and writes all output to one directory.

Inside a test, a feature case is used to describe various possible transforms on the

72 of 117

Chapter 5 Section 5.2. Evaluation Application

�
<!ELEMENT Tes tSe t (TestGroup *)>

<!ELEMENT TestGroup (Test *)>

<! ATTLIST TestGroup Name CDATA #REQUIRED>

<! ATTLIST TestGroup Ac t i ve (True| Fa l se) #REQUIRED>

<!ELEMENT Test (F i l e , D i rec tory , I n s t r u c t i o n F i l e , Cases)>

<! ATTLIST Test Name CDATA #REQUIRED>

<! ATTLIST Test BeatGrouping NMTOKEN #REQUIRED>

<! ATTLIST Test Ac t i ve (True| Fa l se) #REQUIRED>

<!ELEMENT F i l e (#PCDATA)>

<!ELEMENT Di rec to ry (#PCDATA)>

<!ELEMENT I n s t r u c t i o n F i l e (#PCDATA)>

<!ELEMENT Cases (FeatureCase+)>

<!ELEMENT FeatureCase (Features , Sensors , Method , Thresholds)>

<! ATTLIST FeatureCase NormalizeCostMatr ix (True| Fa l se) #REQUIRED>

<! ATTLIST FeatureCase S u f f i x CDATA #REQUIRED>

<!ELEMENT Features (#PCDATA)>

<!ELEMENT Sensors (#PCDATA)>

<!ELEMENT Method EMPTY>

<! ATTLIST Method x s i : t y p e (DTWMethod|FeatureMethod) #REQUIRED>

<! ATTLIST Method Radius NMTOKEN #IMPLIED>

<! ATTLIST Method FeatureFunc (Var iance |Mean| A l l) #IMPLIED>

<!ELEMENT Thresholds EMPTY>

<! ATTLIST Thresholds Min NMTOKEN #REQUIRED>

<! ATTLIST Thresholds Max NMTOKEN #REQUIRED>

<! ATTLIST Thresholds Increment NMTOKEN #REQUIRED>� �
Type Definition 2: DTD for test definition

73 of 117

Chapter 5 Section 5.2. Evaluation Application

input data. Different feature cases e.g., might use different radius settings for the

dynamic time warping (DTW) algorithm.

5.2.2 Identifier Mapping

As noted above, the class labels assigned automatically and the class labels ex-

pected, are in two different label spaces. A mapping has to be determined to

quantify the quality of a classifier. This section describes the algorithm used for

that purpose.

Consider the following two sequences:

Recorded: . . . 2 2 1 1 2 2 3 3 4 5 5 . . .

Given: . . . 1 1 2 2 1 1 3 3 3 4 4 . . .

If identifiers had to match exactly, the above sequence would contain nine

errors. Clearly, this would be wrong as e.g., class 4 in the given sequence and

class 5 in the recorded sequence are matching up. The classifier just assigned

identifiers differently. A human observer would see that identifiers can be mapped

to achieve a better fit. For the sequence above, such a mapping (from recorded

to given) would be:

{1→ 2, 2→ 1, 3→ 3, 4→ 3, 5→ 4}

However, this mapping introduces another problem. Now the number of

errors in the recognized sequence would be zero. Assigning two different classes,

where only one class should have been recognized, is clearly an error. Thus, the

mapping has to be an injective function and no two classes from the recorded

sequence may map to the same class in the given sequence. We require:

f(x1) = y = f(x2)⇒ xy = x2

With that requirement in place, the mapping could be changed in two ways:

{1→ 2, 2→ 1, 3→ ∅, 4→ 3, 5→ 4}

{1→ 2, 2→ 1, 3→ 3, 4→ ∅, 5→ 4}

74 of 117

Chapter 5 Section 5.2. Evaluation Application

While the first mapping would result in a sequence with two errors, the second

one would only result in a set with one error. Which mapping to chose here is

not a clear choice though. Either mapping is valid. However for this thesis, when

evaluating, the best mapping is chosen. In the given example, the class 4 in the

recorded sequence would thus be considered a classification error while class 3

would not. Another aspect of that choice can be observed in this pair of sequences:

Recorded: . . . 1 2 3 3 3 3 3 3 3 3 3 . . .

Given: . . . 1 1 1 1 1 1 1 1 1 1 1 . . .

If the mappings were assigned in a first-come, first-served fashion the result

would be:

{1→ 1, 2→ ∅, 3→ ∅}

This would result in a bad fit of the two sequences. Mapping class three

to class one, on the other hand, would be a much better choice. In general,

small classification errors should not influence the overall classification score

excessively. Therefore, a mapping should minimize the overall error.

When searching for the best fitting mapping, a naive approach would be to

explore all possible mappings. However, for n different classes in the recognized

sequence and m different classes in the given sequence, there are nm possible

combinations, if multiple assignments are allowed. For larger numbers of classes,

this grows too fast for efficient computation. Given the required injective function

constraint, the best mapping only has to be chosen from a smaller set and can be

computed more efficiently.

A matrix buffer is used to aggregate a quality measure for each mapping.

This buffer of size n×m is initialized to zero. Each recognized class identifier is

assigned a row of the matrix and each given class is represented by a column in

the matrix. Now both sequences are traversed. At each position in the sequence,

a recognized class r and a given class g are read. Intuitively mapping r → g

would yield a locally better result than any other mapping. Thus, the value in

the corresponding cell of the buffer is increased by one while all other values

75 of 117

Chapter 5 Section 5.2. Evaluation Application

in the row of r are decreased by one. Hence, higher values in a cell signify a

better mapping while lower values denote the opposite. An example with two

recognized classes and a given sequence with three classes is shown below:

1)
Recorded: 1 1 1 2 1

Given: 3 3 4 4 5

3 4 5
1 0 0 0
2 0 0 0

2)
Recorded: 1 1 1 2 1

Given: 3 3 4 4 5

3 4 5
1 1 -1 -1
2 0 0 0

3)
Recorded: 1 1 1 2 1

Given: 3 3 4 4 5

3 4 5
1 2 -2 -2
2 0 0 0

4)
Recorded: 1 1 1 2 1

Given: 3 3 4 4 5

3 4 5
1 1 -1 -3
2 0 0 0

5)
Recorded: 1 1 1 2 1

Given: 3 3 4 4 5

3 4 5
1 1 -1 -3
2 -1 1 -1

6)
Recorded: 1 1 1 2 1

Given: 3 3 4 4 5

3 4 5
1 0 -2 -2
2 -1 1 -1

After traversing the input sequences, the cost buffer can be used to determine

the best mapping. To do so, in each iteration the highest scoring mapping is

extracted and the corresponding row and column are deleted from the buffer. In

case of ambiguity, a mapping is randomly chosen. This is done until all available

options are used up. Below, this process is shown for the buffer computed in the

previous example:

76 of 117

Chapter 5 Section 5.2. Evaluation Application

1)
3 4 5

1 0 -2 -2
2 -1 1 -1

Choose best mapping: from class 2 to class 4

{1→ ∅, 2→ ∅}

2)
3 4 5

1 0 -2 -2
2 -1 1 -1

Add to mappings and cross from matrix

{1→ ∅, 2→ 4}

3)
3 4 5

1 0 -2 -2
2 -1 1 -1

Choose best mapping: from class 1 to class 3

{1→ ∅, 2→ 4}

4)
3 4 5

1 0 -2 -2
2 -1 1 -1

Add to mappings, cross from matrix and terminate

{1→ 3, 2→ 4}

This process is guaranteed to terminate as the matrix is reduced in each

iteration. It will also choose the best possible mapping. In each step, the best

mapping is extracted, thus no other possibly better choice is ignored.

When reducing the cost matrix, one can also take the class frequencies into

account. One error in a class that occurs twenty times should be less significant

than one error in a class that only occurs five times. This normalization is done

after a cost matrix has been built. In an optional additional step, each element

in the cost matrix is divided by the number of times its given class is occurring.

The following cost matrix reduction is equivalent to the above shown one, but is

working with floating point numbers instead of integers. While the cost function

used in the first case is one that tries to minimize the total number of errors, the

second one tries to do so with the relative amount of errors.

5.2.3 Output

For each test run, a number of data files are generated. They are further processed

using a set of Python scripts to generate graphs. By using an additional set of

script for that purpose, results from multiple test can easily be compared and

combined. The intermediate files used are:

Threshold Error Information For each tested threshold value (see Section 4.4),

the number of found errors is outputted.

77 of 117

Chapter 5 Section 5.3. Evaluation Setting

Best Error Plot Given the result with the best performing threshold, a list of

block errors is generated. For each block in the sequence, a zero is written

to the output when the classification worked correctly and a one if the

classification was erroneous.

Recognized Classes In line with the previous output, the assigned class label

sequence of the best result data is saved.

These intermediate files can be used to e.g., create graphs showing:

• The performance over a threshold interval

• Comparisons of different feature sets

• The classification errors over time

5.3 Evaluation Setting

For the evaluation, a song to use and an according choreography were to be

defined. The decision ultimately was made to use a remix of Lady Gaga’s song

“Just Dance” for this purpose. It is 4 minutes and 54 seconds long, at a speed

of 119bpm. With a prominent bass drum track it allows for good beat detection

and contains no ambiguous parts, that could possibly throw off participants. At

119bpm, it is also in the lower speed range for dance music, making it easier for

participants to follow it. A long lead-in, containing only a drum pattern, eases

starting off and gives participants some time to get used to the rhythm.

A set of six dance movements was defined to be danced on top of this song. With

each one to be danced in multiples of one 4/4 measure, they are given as:

A. Side steps with no arm movement

B. Rock steps sideways without arm movement

C. Rock steps sideways with arm movement

D. Side steps with arm movement

E. Side steps with arms up in the air

F. Standing still with head bopping

78 of 117

Chapter 5 Section 5.4. Evaluation Procedure

A (8) D (4) B (4) D (4)

A (8) D (8) E (8) F (1)

C (8) D (8) E (8)

C (8) D (8) F (4) D (8)

C (4) B (8) A (8) F (4)

E (16) A (8)

Figure 5.4: Dance movement sequence used in the evaluation

As can be seen, there are two distinct foot movements combined with three

possible arm movements. In addition, there is a resting pose, used in three short

intermissions present in the song. The movements were chosen as to allow partici-

pants to take part in the evaluation without lengthy training. While more complex

movements were used for theoretical purposes (see Section 4.2), those were

deemed too complex for non-professional dancers in an ad hoc evaluation session.

The whole 4:54 m long song at the given speed results in 145 blocks. Each

block is equivalent to one measure in the song. The prescribed sequence of dance

moves is shown in Figure 5.4.

5.4 Evaluation Procedure

Four participants helped in evaluating the algorithms used in this thesis. Before

starting a recording session, all participants were instructed on the testing proce-

dure. Specifically, it was pointed out what parts of the recording application’s

interface to focus on and what to expect. Also, the dance moves to be performed

were explained to them. While recording, additional help was provided. This

includes oral notification of upcoming transitions and movement instructions.

79 of 117

Chapter 5 Section 5.5. Evaluation Issues

5.5 Evaluation Issues

When recording a dance session, no participant was able to dance the prescribed

moves without errors. Especially at transitions from one movement class to

another, mistakes were made. While instructions were provided, sometimes

some transitions followed each other too fast for some participants. Also, longer

stretches of one movement class led to some participants getting too comfortable

with one move and having problems switching to a new one. Most of those

problems can be attributed to the experience level of the participants. The chore-

ography was not specifically trained beforehand and none of the participants

were used to this kind of task. Dancing according to a predefined motion set also

was not something they were used to.

While the sensors themselves worked well, the straps holding them in place

turned out to be a suboptimal choice. While they allowed the system to be

worn by participants of varying stature, they could not ensure a tight fit over the

duration of an entire recording session. While securely fastened in the beginning,

the forces exhibited by the dance movements made them more loose over time.

Due to this all participants had to manually refasten the sensor straps while

dancing. This inevitably led to some noise in the recording. Furthermore, with

the sensors slightly shifting, an additional error is introduced.

80 of 117

Chapter 6

Results

Based on the recorded motion data from several participants, the performance

of the dynamic time warping (DTW) and feature vector comparison (FVC) algo-

rithms is evaluated. Several aspects are of interest at this point:

• How well can distinct movements be distinguished?

• What parts of the motion data have the highest influence on the results?

• Are parameter choices participant-dependent?

• How strong is the influence of the sequence length?

In this chapter, those questions are answered. As general convention, all error

measures in this section are given as percentages. The error rate will be shown

on the y-axis, with the range always set to [0, 100]. Often the x-axis is used to

show the threshold being used. With the similarities between blocks always in

an [0, 1] interval (as explained in Chapter 4), this also translates to the x-axis.

However, the two methods used have different ranges of interest in this respect.

Therefore, the range used here often varies. In several examples, results are

shown for the whole recording and the first half of the recording. This was done,

because recording issues were mostly concentrated in the later half and a focus

on the first one provides a clearer view on the results.

It is worth mentioning that the error rate is sometimes deceiving. Consider

an algorithm that assigns a new label to each block. As the identifier mapping

(see Section 5.2.2) tries to find the best fit, some blocks are still seen as correct.

Specifically, an amount of blocks equal to the number of distinct classes in the

given sequence is considered correct. Applying that logic to a sequence of 20

blocks with four distinct given classes, 20% would be seen as correctly classified

even though no blocks were grouped. For longer sequences, this problem be-

comes less of an issue, as long as the number of distinct given classes does not

81

Chapter 6 Section 6.1. Suitable Dynamic Time Warping Parameters

1 3 5 10 15 20 30 40 60
DTW Radius

20

25

30

35

40
E
rr

o
rs

 (
%

)

0

500

1000

1500

2000

2500

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s)

Figure 6.1: Comparing cost and error rate of different FastDTW radius choices.

increase correspondingly.

The other extreme is a classification that assigns all blocks to the same class.

The identifier mapping will connect that class with the given class of the highest

frequency. To put this in perspective, consider a 20 block sequence with one 10

block spanning class and two classes spanning 5 blocks. A recognized sequence

of only one class would map to the 10 block long given sequence. Thus, 50% of

the data is considered as correctly classified. This problem becomes less of an

issue when the number of distinct given classes goes up or given classes are more

uniformly distributed.

6.1 Suitable Dynamic Time Warping Parameters

In a first step, appropriate radii for use with DTW were to be determined. As

mentioned in Section 4.3.3, this value influences the computational cost and

accuracy of the DTW algorithm. A multitude of DTW radii were tested on a

full dance recording (145 blocks), with results shown in Figure 6.1. As can be

seen any radius higher than 3 does not result in less errors. The computational

82 of 117

Chapter 6 Section 6.2. Two Motion Comparison

0.1 0.3 0.5 0.7 0.9
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

DTW

Raw Sensor Data

0.1 0.2 0.3
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Feature Vector Comparison

Raw Sensor Data Mean + Variance
Raw Sensor Data Mean
Raw Sensor Data Variance
Acclerometer Magnitude Mean + Variance
Gyroscope Magnitude Mean + Variance
Gyroscope + Accelerometer Magnitude Mean + Variance

Figure 6.2: Comparison of error rate when detecting differences between side
steps with and without arm movement.

cost increases significantly, though. Based on this result, a DTW radius of 4 was

chosen for all subsequent DTW calculations.

6.2 Two Motion Comparison

To determine the suitability of both approaches, DTW and simple block similarity

measures, they were tested on a sequence of two different motion patterns.

Sixteen blocks from a recorded session were used. With the song used, sixteen

blocks (measures) span about 32 seconds in time. From those sixteen blocks, eight

blocks were side steps without arm movement and eight blocks were sidesteps

with arm movement. As can be seen in Figure 6.2, the DTW approach was able to

correctly differentiate between those two sequences with zero errors. Note that

there is a range of threshold values being appropriate. Classifying blocks based

solely on whole block similarity worked equally well for some feature choices.

In this case, the mean of the raw sensor data seemed to be an appropriate

choice. Using the variance as well made no difference, while the variance alone

performed somewhat worse. Other features did not fare as well at all.

83 of 117

Chapter 6 Section 6.2. Two Motion Comparison

0.1 0.3 0.5 0.7 0.9
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

DTW

Raw Sensor Data

0.1 0.2 0.3
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Feature Vector Comparison

Raw Sensor Data Mean + Variance
Raw Sensor Data Mean
Raw Sensor Data Variance
Acclerometer Magnitude Mean + Variance
Gyroscope Magnitude Mean + Variance
Gyroscope + Accelerometer Magnitude Mean + Variance

Figure 6.3: Comparison of error rate when detecting differences between side
and rock steps with arm motion.

Another comparison of two different moves is shown in Figure 6.3. Here,

eight blocks of side steps with arm movement were compared to eight blocks

of rock steps with arm movement. Compared to the previous two moves, these

two seem to be harder to differentiate. While the variance now comes out as the

best performing feature when using FVC, its accuracy varies wildly. The DTW

algorithm also has a smaller window of working thresholds. All this reflects, that

side steps and rock steps are quite similar to this system. To some extent this can

be attributed to a lack of feet sensors, that would be particularly important in

distinguishing those two motions.

A last comparison was done for side steps with the arms either moving in front

of the body or being up in the air. Figure 6.4 shows, that those two movements

could be classified comparatively well. The performance of the FVC seems quite

in line with the behavior exhibited in the first comparison. This indicates, that

a combination of the mean and variance of the raw sensor data is the best

performing overall set of block feature to use. In all following comparisons this

combination is thus chosen.

84 of 117

Chapter 6 Section 6.3. Influence of Feature Choices

0.1 0.3 0.5 0.7 0.9
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

DTW

Raw Sensor Data

0.1 0.2 0.3
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Feature Vector Comparison

Raw Sensor Data Mean + Variance
Raw Sensor Data Mean
Raw Sensor Data Variance
Acclerometer Magnitude Mean + Variance
Gyroscope Magnitude Mean + Variance
Gyroscope + Accelerometer Magnitude Mean + Variance

Figure 6.4: Comparison of error rate when detecting differences between side
steps with arm motion and with arms up in the air.

6.3 Influence of Feature Choices

As described in Section 4.3.3, the DTW algorithm is not limited to working on

the raw sensor data, but can also use any of the various features described in

Section 4.3.1. For evaluation purposes, several such features were tested on a

33 block long subsequence of a dance recording. This sequence included five

different given classes to be distinguished and lasted almost 67 seconds.

Figure 6.5 shows the performance of several features. While it is readily

apparent that some features are worse than others, which is best demands further

investigation. For example, several features perform well for a short window of

lower threshold values. Lower thresholds affect the clustering to be less inclusive

(demands higher similarity for clustering). At the same time, those features

yield significantly worse error rates for just slightly higher threshold values. This

indicates that those features generally yielded blocks with high similarity. While

a demanding threshold still led to a good classification, higher threshold tended

to lump them all together.

85 of 117

Chapter 6 Section 6.3. Influence of Feature Choices

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)
Accelerometer Magnitude
Relative Accelerometer Magnitude
X-Axis Sensor Data
Y-Axis Sensor Data
Z-Axis Sensor Data

Gyroscope Magnitude
Relative Gyroscope Magnitude
Raw Sensor Data
All Available Features
Relative Gyroscope Magnitude + Raw Data

Figure 6.5: Comparison of different feature choices for use with the DTW algo-
rithm.

On the other hand, the raw sensor values led to rather promising results.

Comparably low error rates are achieved over a large threshold window, showing

that a good differentiation of classes was possible. While some other features out-

performed the raw sensor data at some thresholds, those can be seen as outliers

in the overall big picture. The relative gyroscope magnitude also performed quite

well, but only over a much smaller threshold window.

Combining two well performing features does not necessarily yield a higher

performing one. For example, the raw sensor data and the relative gyroscope

magnitude fare quite well on their own. Combining them however, does result in

a feature with significantly decreased performance. Looking at the graph provides

some information on why that is the case. Said feature and the feature combining

all available ones, only start performing better at high threshold values. This

indicates, that all resulting blocks were detected as being very dissimilar. With

high distance values between blocks, only an equally high threshold could result

in any clustering at all.

86 of 117

Chapter 6 Section 6.4. Influence of Sensor Choices

0.05 0.10 0.15 0.20 0.25
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)
Accelerometer Magnitude
Relative Accelerometer Magnitude
X-Axis Sensor Data
Y-Axis Sensor Data
Z-Axis Sensor Data

Gyroscope Magnitude
Relative Gyroscope Magnitude
Raw Sensor Data
All Available Features
Relative Gyroscope Magnitude + Raw Data

Figure 6.6: Comparison of different feature choices for use with the FVC algo-
rithm.

Using the same block sequence and feature set with the FVC approach, led to

less conclusive results. Note that the features in this section do not correspond to

the block level features of this approach. As mentioned above, the FVC here uses

the mean and variance of whatever underlying block data as block level features.

As can be seen in Figure 6.6, the raw sensor data and y-axis sensor data seem

to perform roughly equally. Some other features perform well at low threshold

values but exhibit rapidly declining performance for higher ones.

The results shown above indicate that the raw sensor data itself is the most

promising feature. While other features might excel the raw sensor data at

certain thresholds, this is not the case in a more general view. Thus, other

possible features sets are eschewed for the rest of the tests and the raw sensors

values are used in all comparisons coming up.

87 of 117

Chapter 6 Section 6.4. Influence of Sensor Choices

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)
All Sensors
Hip Sensor
Hand Sensor
Arm Sensor
Leg Sensor

Hip + Hand Sensors
Hip + Arm Sensors
Hip + Leg Sensors
Hand + Arm Sensors
Hand + Leg Sensors

Arm + Leg Sensors
Hip + Hand + Arm Sensors
Hip + Hand + Leg Sensors
Hip + Arm + Leg Sensors
Hand + Arm + Leg Sensors

Figure 6.7: Comparison of different combinations of sensor data for use with the
DTW algorithm.

6.4 Influence of Sensor Choices

With the best features to use being determined, another question is which sensors

have the most influence on the overall result. For this purpose, all possible com-

binations of sensors have been tested for their viability. While the resulting graph

is somewhat overwhelming at first sight, a number of aspects can be observed.

For instance, a certain banding is visible. Four distinct horizontal lines are visible

that most results converge to. This is directly related to the number of classes in

the given sequence. For this test blocks 20 to 53 (see also Figure 5.4) of a dance

recording were used, the same sequence as in the feature comparison above. In

this sequence, there are four given classes of length 8 and one that is only 1 block

long. The threshold determines the amount of clustering with each jump down in

the resulting graph signifying a new correctly detected class. An 8 block error in

a sequence of 33 blocks corresponds to about a 25 point increase of the error rate.

The jumps in the graph roughly correspond to that number. As one class is only 1

block long in the given sequence, a wrong classification here is not immediately

apparent.

88 of 117

Chapter 6 Section 6.5. Influence of Sequence Length

0.1 0.2 0.3 0.4 0.5
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)
All Sensors
Hip Sensor
Hand Sensor
Arm Sensor
Leg Sensor

Hip + Hand Sensors
Hip + Arm Sensors
Hip + Leg Sensors
Hand + Arm Sensors
Hand + Leg Sensors

Arm + Leg Sensors
Hip + Hand + Arm Sensors
Hip + Hand + Leg Sensors
Hip + Arm + Leg Sensors
Hand + Arm + Leg Sensors

Figure 6.8: Comparison of different combinations of sensor data for use with the
FVC algorithm.

It can also be seen, that the combination of all sensors performed best. Leaving

out the hand sensor had the most impact on the resulting classification, closely

followed by the arm sensor. The hip sensor had the least influence on the result,

with the leg sensor only slightly more important. The further away from the body

center a sensor is, the higher its impact on the classification seems to be. This

should come as no surprise, as the movements in the limbs are usually more

pronounced than at the body center.

As earlier, the same tests were also run using the FVC algorithm. As can be

seen in Figure 6.8 this led to similar results.

6.5 Influence of Sequence Length

The length of a sequence has some influence on the classification. One aspect

here is that over time, slight changes to a dance move are more likely to occur.

While it is comparatively easy to perform the same move for 20 seconds, it is

harder to repeat the same move after 2 minutes have passed. Thus, one would

expect, that a classification of shorter time spans contains less errors. To test

89 of 117

Chapter 6 Section 6.5. Influence of Sequence Length

0 30 60 90 120 145
Block

0

20

40

60

80

100
E
rr

o
rs

 (
%

)

0 30 60 90 120 145
Block

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

0 50 100 145
Block

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

0 145
Block

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Figure 6.9: DTW-based classification results for several subsequences of sensor
data. The width of each bar denotes the data range being used.

this, one recording was analyzed in various windows. Looking at the results

in Figure 6.9, a certain increase in overall error is apparent. While analyzing

sequences of 15 block length, the maximum error was below 20%, the overall

error in a classification of the whole sequence was at slightly over 30%. The

data also shows peaks in error rate in later parts of the recorded sequence. Some

of that can be attributed to the sensor straps loosening and required fastening

motions.

Similar results are also obtained using the FVC algorithm. Figure 6.10 shows,

that only slight variations are present in comparison to the DTW algorithm.

90 of 117

Chapter 6 Section 6.5. Influence of Sequence Length

0 30 60 90 120 145
Block

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

0 30 60 90 120 145
Block

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

0 50 100 145
Block

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

0 145
Block

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Figure 6.10: FVC-based classification results for several subsequences of sensor
data. The width of each bar denotes the data range being used.

91 of 117

Chapter 6 Section 6.6. Comparison of Several Recordings

6.6 Comparison of Several Recordings

Figures 6.11 and 6.12 show how well the DTW and FVC approaches were able to

classify recordings from four participants. For both approaches, all sensors were

used with no additional features on top of the raw sensor data. As can be seen,

some participant’s motions were more easily discernable than other’s. Also, each

participants seems to have a separate best performing threshold. However, all

curves exhibit somewhat similar behavior over the threshold range.

As mentioned earlier, the quality of the recordings degraded over time. Espe-

cially loosened sensors could have skewed the results. To sidestep some of these

issues, a comparison was also done based only on the first half of the recorded

data. As can be seen in Figures 6.13 and 6.14, this led to better classification

results.

While the previously mentioned graphs showed the change of the error rate

for a range of thresholds, a closer look at the resulting classification is still missing.

From all the thresholds tested above, the best performing one is chosen and the

resulting classification is further detailed. Figures 6.15 and 6.16 show at which

point of the recorded data the classification went wrong.

As earlier in this section, the test was repeated using only the first half of each

recording. Figures 6.17 and 6.18 show the resulting classification errors.

92 of 117

Chapter 6 Section 6.6. Comparison of Several Recordings

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Participant 1
Participant 2
Participant 3
Participant 4

Figure 6.11: Comparing DTW-based classification results from multiple partici-
pants. Error rate computed using whole recording.

0.1 0.2 0.3 0.4 0.5
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Participant 1
Participant 2
Participant 3
Participant 4

Figure 6.12: Comparing FVC-based classification results from multiple partici-
pants. Error rate computed using whole recording.

93 of 117

Chapter 6 Section 6.6. Comparison of Several Recordings

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Participant 1
Participant 2
Participant 3
Participant 4

Figure 6.13: Comparing DTW-based classification results from multiple partici-
pants. Error rate computed using first half of recording.

0.1 0.2 0.3 0.4 0.5
Clustering Threshold

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

Participant 1
Participant 2
Participant 3
Participant 4

Figure 6.14: Comparing FVC-based classification results from multiple partici-
pants. Error rate computed using first half of recording.

94 of 117

Chapter 6 Section 6.6. Comparison of Several Recordings

0 20 40 60 80 100 120 140

1
2
3
4
5
6

C
la

ss

0 20 40 60 80 100 120 140

1
2
3
4
5
6

C
la

ss

0 20 40 60 80 100 120 140

1
2
3
4
5
6

C
la

ss

0 20 40 60 80 100 120 140
Block

1
2
3
4
5
6

C
la

ss

Figure 6.15: Classification errors when using DTW-based classification. Green
blocks show correctly classified blocks, while red blocks denote erroneous classifi-
cation.

95 of 117

Chapter 6 Section 6.6. Comparison of Several Recordings

0 20 40 60 80 100 120 140

1
2
3
4
5
6

C
la

ss

0 20 40 60 80 100 120 140

1
2
3
4
5
6

C
la

ss

0 20 40 60 80 100 120 140

1
2
3
4
5
6

C
la

ss

0 20 40 60 80 100 120 140
Block

1
2
3
4
5
6

C
la

ss

Figure 6.16: Classification errors when using FVC-based classification. Green
blocks show correctly classified blocks, while red blocks denote erroneous classifi-
cation.

96 of 117

Chapter 6 Section 6.6. Comparison of Several Recordings

0 10 20 30 40 50 60 70

1
2
3
4
5
6

C
la

ss

0 10 20 30 40 50 60 70

1
2
3
4
5
6

C
la

ss

0 10 20 30 40 50 60 70

1
2
3
4
5
6

C
la

ss

0 10 20 30 40 50 60 70
Block

1
2
3
4
5
6

C
la

ss

Figure 6.17: Classification errors when using DTW-based classification on the
first half of each recording. Green blocks show correctly classified blocks, while
red blocks denote erroneous classification.

97 of 117

Chapter 6 Section 6.6. Comparison of Several Recordings

0 10 20 30 40 50 60 70

1
2
3
4
5
6

C
la

ss

0 10 20 30 40 50 60 70

1
2
3
4
5
6

C
la

ss

0 10 20 30 40 50 60 70

1
2
3
4
5
6

C
la

ss

0 10 20 30 40 50 60 70
Block

1
2
3
4
5
6

C
la

ss

Figure 6.18: Classification errors when using FVC-based classification on the first
half of each recording. Green blocks show correctly classified blocks, while red
blocks denote erroneous classification.

98 of 117

Chapter 6 Section 6.7. Comparison of Error Rate by Dance Move

6.7 Comparison of Error Rate by Dance Move

While an overall error measure provides a general performance estimate, de-

termining the error per dance move helps with a more in-depth understanding.

Figures 6.19 and 6.20 show such data for one participant. Note that the full

recording was used for this and thus, higher error rates than in partial compar-

isons are to be expected. In the DTW approach classes 2 and 6 seem to be an

issue. Those two coincidentally are also the two classes with the least amount of

motion being required for them. On the other hand, more vivid movements were

detected comparatively well.

In the FVC approach on the other hand, a much harsher difference in perfor-

mance can be observed. While three classes were detected really well, the other

three were always misclassified. The most likely reason for this behavior is, that

the recognized classes could have fallen in two categories: some that are pretty

similar to each other and some that are not. Because one overall threshold is

chosen, a decision is made to either being able to differentiate the first category

or the second one. Here a threshold being able to distinguish side step motions

was not appropriate to distinguish e.g., side steps from rock steps.

While the first two figures only showed the error rates from one participant,

Figures 6.21 and 6.22 do so for all participants. The variance in error rate is

deceiving to some extent, as the different recordings have different base error

rates. Thus, the relative error rates are the most interesting aspect here. Note

that the relative error between the given classes is roughly similar to the one from

a single participant (shown above). This further stresses, that the algorithms’

performance is dependent on the motions used.

99 of 117

Chapter 6 Section 6.7. Comparison of Error Rate by Dance Move

1 2 3 4 5 6
Class

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

1: Side steps with no arm movement
2: Rock steps sideways without arm movement
3: Rock steps sideways with arm movement

4: Side steps with arm movement
5: Side steps with arms up in the air
6: Standing still with head bopping

Figure 6.19: Comparing error rates by given class for one participant using
DTW-based classification

1 2 3 4 5 6
Class

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

1: Side steps with no arm movement
2: Rock steps sideways without arm movement
3: Rock steps sideways with arm movement

4: Side steps with arm movement
5: Side steps with arms up in the air
6: Standing still with head bopping

Figure 6.20: Comparing error rates by given class for one participant using
FVC-based classification

100 of 117

Chapter 6 Section 6.7. Comparison of Error Rate by Dance Move

1 2 3 4 5 6
Class

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

1: Side steps with no arm movement
2: Rock steps sideways without arm movement
3: Rock steps sideways with arm movement

4: Side steps with arm movement
5: Side steps with arms up in the air
6: Standing still with head bopping

Figure 6.21: Comparing multi-participant error rates by given class using DTW-
based classification

1 2 3 4 5 6
Class

0

20

40

60

80

100

E
rr

o
rs

 (
%

)

1: Side steps with no arm movement
2: Rock steps sideways without arm movement
3: Rock steps sideways with arm movement

4: Side steps with arm movement
5: Side steps with arms up in the air
6: Standing still with head bopping

Figure 6.22: Comparing multi-participant error rates by given class using FVC-
based classification

101 of 117

Chapter 6 Section 6.8. Threshold Choice

1 2 3 4
Participant

0.0

0.2

0.4

0.6

0.8

1.0

B
e
st

 C
lu

st
e
ri

n
g
 T

h
re

sh
o
ld

(a) Dynamic Time Warping

1 2 3 4
Participant

0.0

0.2

0.4

0.6

0.8

1.0

B
e
st

 C
lu

st
e
ri

n
g
 T

h
re

sh
o
ld

(b) Feature Vector Comparison

Figure 6.23: Means of lowest error yielding thresholds per participant

1 2 3 4
Participant

0.0

0.2

0.4

0.6

0.8

1.0

B
e
st

 C
lu

st
e
ri

n
g
 T

h
re

sh
o
ld

(a) Dynamic Time Warping

1 2 3 4
Participant

0.0

0.2

0.4

0.6

0.8

1.0

B
e
st

 C
lu

st
e
ri

n
g
 T

h
re

sh
o
ld

(b) Feature Vector Comparison

Figure 6.24: Means of lowest error yielding thresholds per participant for first
half of each recording

6.8 Threshold Choice

In most previous comparisons the error rate was given as a function of the thresh-

old being used. It could also be seen in Section 6.6 how the chosen threshold

varies with each participant and performs best at different ranges. In Figure 6.23,

a comparison of the best performing thresholds is shown. While that graph shows

the performance over the whole recorded sequence, Figure 6.24 does so only for

the first half.

For DTW the threshold is roughly in an [0.5, 0.8] interval. In the FVC approach

on the other hand, a [0.1, 0.2] interval seems more appropriate.

102 of 117

Chapter 7

Conclusion & Future Work

In this thesis, a system has been described that is able to detect recurring pat-

terns in dance movements. In this chapter, the contents of the thesis are again

reevaluated, based on the scenario outlined in the introduction. Furthermore, an

outlook is given on potential extensions of the work at hand.

In the first chapter of this thesis an overview of interactive dance and motion

patterns was provided. It was described, how interactive dance is used in the

fields of art, video games and clubs. As clubs are the main scenario for this

thesis, this setting was described extensively. Especially the audience–performer

relationship and how performers could utilize technology for their practice were

examined more closely.

In the second chapter several existing hardware solutions for handling dance

input were presented. Additional interactive dance projects were presented as

part of this overview as well. This chapter also detailed a number of existing

approaches for dance movement processing.

The third chapter started with a definition of hardware requirements applying

to devices in the thesis’s scenario. The sensor options described in the second

chapter are evaluated according to those criteria. Based on those requirements a

prototype system was assembled, repurposing existing hardware. It was described

in the following chapters too.

In chapter four the algorithms used for dance pattern recognition were de-

fined. However, before doing so dance movements were examined more closely.

This was done to, for instance, determine appropriate segmentation choices for

the input. From a set of examples, distinguishing features of dance movements

were identified. Based on those preliminaries a formal definition for blocks of

103

Chapter 7 Section 7.1. Conclusion

motions was given. Two algorithms were described that are able to determine the

distance between two such blocks. First, the feature vector comparison (FVC) ap-

proach does so by comparing blocks based on whole block descriptors. Secondly,

a dynamic time warping (DTW) approach determines the distance by examining

the sequence of values inside those blocks. With two means available to provide

distance measures, an unsupervised clustering algorithm was described that

builds on top of that.

In the fifth chapter, the steps taken to evaluate the proposed methods were

described. This included the description of two different applications and the

evaluation itself. For the recording application it was described how user interac-

tions were designed to help participants when recording and how the application

itself ensures proper data handling in the process. Together with a description of

the steps needed for evaluation, all custom file formats used in the process are

detailed as well. After recording a dance session, a second application is used to

compute performance measures for the algorithm. This application was described

as well. This included a definition of a label space mapping algorithm that allows

to compare sequences with different class label spaces, determining the best fit

between two such sequences. Finally, the evaluation procedure and related issues

were described too.

Finally, in chapter six, the results from the evaluation were presented. For

both methods, appropriate sensor features to use and parameters to set were

evaluated. It was also shown how sequence length and given dance movements

influence the resulting classification.

7.1 Conclusion

In Chapter 6 several properties of the work done in this thesis were shown.

First of all, both evaluated methods were able to correctly distinguish two given

motions in one sequence. It was also demonstrated that, among the features

available, using the raw sensor data yielded the best results so far. Comparing

multiple recordings, common properties of the threshold curves were identified

104 of 117

Chapter 7 Section 7.1. Conclusion

and a rough range of applicable threshold values was defined.

Working with data from real dance recordings, error rates of about 30% have

been achieved. Omitting more erronous data at the end of the recordings, this

error rate goes down to about 20%. The results indicated that some movements

were harder to distinguish than others. Especially movements eliciting low sen-

sor responses were problematic. However, more pronounced movements were

recognized much better.

The work on pattern detection was done in the context of interactive dance in

clubs. In Chapter 1, this scenario was described and the question remains how

the results of this work relate to it. This relates back to the study of Ulyate and

Bianciardi [64], who found that such means of interactions that allow for more

freedom of movement also accounted for the more satisfying user interactions.

The system described in this thesis very much aligns with that notion, providing

a powerful abstraction of complex human motion.

When discussing the results, the work of Feldmeier should be taken into

account again. He showed how simple mappings (he used a measure of overall

crowd energy to control music and lighting) can be used to facilitate interactive

night club experiences and described how patrons enjoyed shaping the experience

themselves [22]. Similar uses would be appropriate for dance patterns as well.

For example, a VJ could use the current pattern identifier in his mix to control

switching between scenes or to trigger clips to be shown.

Another aspect to keep in mind is that the presented system is not necessarily

targeted at crowds. While it scales to multiple users, that scenario would bring

up additional questions of how to interpret the sensor data. On the other hand,

the system is well suited for individual users embedded within a crowd. As

mentioned in Section 3.1.1, wearable systems are a good fit in this scenario.

This, for example, enables use cases where a designated member of the VJ or DJ

team is embedded within the crowd. Dancing together with other patrons, she

could partake in the crowd experience while simultaneously shaping the outer

influences of that experience by e.g., mapping her movements to control the

105 of 117

Chapter 7 Section 7.1. Conclusion

lighting.

The presented method also relates back to the human-computer interac-

tion (HCI) recommendations for DJ applications, by Gates et al. [25] (see Sec-

tion 1.2.3). More specifically, the presented system relates to:

Quality of Information DJs are perfectly able to judge a crowd’s excitement,

they only need a glimpse to do so. However, this ability does not easily

translate to dance patterns. Here a longer observation might be needed to

be able to discern different patterns. Thus, additional information could be

provided by the presented system to close that gap.

Measurement of Excitement Dance patterns are one additional way to gather

information on dancers. Especially the FVC method is tailored towards

abstractions of motion, such as energy level. Also, recognizing a pattern

that previously preceded particularly energetic movements could indicate a

similar change coming up soon.

Biofeedback The presented method fits this recommendation rather well. The

additional cues provided add additional value to a DJs practice, where such

information is yet unavailable. Further means have to be provided to yield

a meaningful mapping though.

Cognitive Load Dance patterns are a comparatively high level description of

motions. A multi-dimensional data stream of high temporal frequency is

reduced to a symbolic identifier stream. Thus, any additional cognitive load

on the DJ’s side is rather small.

Dance patterns could potentially fit into a VJs or DJs workflow quite well.

However, appropriate mappings to further evaluate this were not within the scope

of this thesis. Nonetheless, the general feasibility of the proposed method has

been shown. Recognizing patterns in dance motion could thus be an exciting

extension of the dance club experience.

106 of 117

Chapter 7 Section 7.2. Future Work

7.2 Future Work

There are a number of areas in this thesis that are open to extension. This ranges

from hardware improvements to algorithmic ones. Several possible improvements

are detailed in this section.

7.2.1 Hardware

While the current wearable system worked well, there is some room for improve-

ment. An important aspect here are the mounting straps used. As the sensors

loosened over time when recording, a better solution is needed. One option

would be to use elastic bandages. While those would provide the needed fixation,

they are quite cumbersome to put on and remove though. Another possibility

would be to sew sensors directly into textiles. If tight fitting, sensor shifting

would not be an issue. However, this limits one sensor set to be only used by

participants of similar stature.

The sensors themselves could be upgraded to also include magnetometers.

This would enable an additional set of features worth exploring. For example,

absolute motion data based on accelerometers and gyroscopes is quite error-

prone, although, there are approaches, such as Kalman filtering, to compute

an estimate of the absolute sensor orientation (see e.g., papers by Bachmann

et al. [5, 6]). Magnetometers, on the other hand, enable easier pose estimation,

an interesting feature for dance applications. More advanced sensors, such as

InvenSense’s MPU30001 could also be considered. This chip contains motion

processing capabilities right on the chip and provides sensor orientation data to

hosts. This enables offloading of some motion processing tasks to the sensors

themselves and reduces the load on the communication channel and the host

application. Potentially, this would also enable to run the entire algorithm on the

wearable system itself.

The last hardware related aspect is the communication channel used. While

Wi-Fi was used for this thesis, this is far from the optimal solution. Especially

with respects to battery life, other wireless communication options would be

1See http://invensense.com/mems/gyro/mpu3000.html

107 of 117

http://invensense.com/mems/gyro/mpu3000.html

Chapter 7 Section 7.2. Future Work

preferable. Thus, while other factors prescribed the use of Wi-Fi, future systems

should explore other options. As described in Section 3.2.3, custom designed

wireless systems have shown good results in the past and would be one interesting

option.

7.2.2 Algorithm

As other people have had some success with using principal component analysis

(PCA) and independent component analysis (ICA) as pre-processing steps in activ-

ity recognition (see e.g., [40]), it could be worthwhile to explore the applicability

for dance data as well. Overfitting could possibly be an issue with that approach,

though. The extent of that problem and whether it can be avoided would need to

be evaluated. Also using PCA, Perlibakas has tested additional distance metrics

for face-recognition [50]. Whether some of them could also be used to improve

dance pattern recognition is another possible extension.

Currently, computing the distance of a new block to an existing cluster is

quite inefficient. While this is no big problem when using FVC, comparing blocks

using DTW is quite expensive. If a way was found to combine previously grouped

blocks, only one similarity computation would be needed for each cluster. Poten-

tially, two blocks could be combined by time warping to a common length and

blending them together.

With some movements, having only one threshold for clustering was insuf-

ficient. Consider a case, where two groups of movements exist. In the first

one are movements that are quite distinct. Each of them is different from the

others. In the second group are movements that are rather similar. Considering

only movements from the first group, a rather high threshold value would be

appropriate. Similar movements would be clustered together with only a slight

risk for mislabeled movements. In the second group however, such a threshold

would lead to different results. As those movements are only differing to a

smaller extend, a high threshold value just groups them all together. Here, a

lower threshold is needed to be able to tell them apart. Potentially, an adaptive

thresholding scheme could be employed to solve this problem. This could, for

108 of 117

Chapter 7 Section 7.2. Future Work

example, require finding features strongly correlating with threshold values and

training a threshold estimator based on that data.

7.2.3 Evaluation

An evaluation with professional dancers and a trained choreography would allow

a more precise measure of performance. Currently, no completely error-free

recording is available for testing. While several repeated recordings reduced

the number of errors, they still could not provide the best possible evaluation data.

Another option would be to record all dances on video as well. Afterwards,

a list of observed motions could be compiled manually and compared with the

recognized sequence of classes. This would require a substantial amount of work

and time though.

Finally, it would be a worthwhile endeavor to test the system in a more

concrete setting. This would require building a system to make recognized dance

patterns available to DJs or VJs. Both, Musical Instrument Digital Interface

(MIDI) and Open Sound Control (OSC), could be used for this purpose. For OSC

one could build on top of the Gesture Description Interchange Format (GDIF)2

described by Marshall et al. [41].

2See http://www.gdif.org (last accessed on March 22nd 2010)

109 of 117

http://www.gdif.org

Bibliography

[1] Erwin Aitenbichler, Jussi Kangasharju, and Max Mühlhäuser. Mundo-
Core: A light-weight infrastructure for pervasive computing. Pervasive
and Mobile Computing, 3(4):332–361, 2007. ISSN 15741192. doi:
10.1016/j.pmcj.2007.04.002. URL http://linkinghub.elsevier.com/

retrieve/pii/S1574119207000296.

[2] Miguel Alonso, Bertrand David, and Gaël Richard. Tempo and beat esti-
mation of musical signals. In Proceedings of the 5th International Sym-
posium on Music Information Retrieval (ISMIR’04), volume pp, pages
158–63, Barcelona, Spain, 2004. URL http://ismir2004.ismir.net/

proceedings/p032-page-158-paper191.pdf.

[3] Ryan Aylward and Joseph A. Paradiso. Sensemble: A Wireless, Compact,
Multi-User Sensor System for Interactive Dance. In Proceedings of 2006
Conference on New Interfaces for Musical Expression, pages 134–139, Paris,
France, 2006.

[4] Ryan Aylward and Joseph A. Paradiso. A compact, high-speed, wearable
sensor network for biomotion capture and interactive media. In Proceedings
of the 6th international conference on Information processing in sensor
networks - IPSN ’07, page 380, New York, New York, USA, 2007. ACM
Press. ISBN 978159593638X. doi: 10.1145/1236360.1236408. URL
http://portal.acm.org/citation.cfm?doid=1236360.1236408.

[5] Eric R. Bachmann, Robert B. McGhee, Xiaoping Yun, and Michael J. Zyda.
Inertial and magnetic posture tracking for inserting humans into networked
virtual environments. Virtual Reality Software and Technology, 2001.

[6] Eric R. Bachmann, Xiaoping Yun, and Robert B. McGhee. Sourceless track-
ing of human posture using small inertial/magnetic sensors. In Proceed-
ings 2003 IEEE International Symposium on Computational Intelligence
in Robotics and Automation, pages 822–829, Kobe, Japan, 2003. IEEE.
ISBN 0-7803-7866-0. doi: 10.1109/CIRA.2003.1222286. URL http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1222286.

[7] Alice Bayliss, Jennifer G. Sheridan, and Nicolas Villar. New shapes on the
dance floor: influencing ambient sound and vision with computationally
augmented poi. International Journal of Performance Arts and Digital
Media, 1(1):67–82, April 2005. ISSN 1479-4713. doi: 10.1386/padm.1.1.
67/1. URL http://www.atypon-link.com/INT/doi/abs/10.1386/padm.1.

1.67/1.

[8] Rudolf Benesh and Joan Benesh. An Introduction to Benesh Dance Notation.
A&C Black, London, 1956.

110

http://linkinghub.elsevier.com/retrieve/pii/S1574119207000296
http://linkinghub.elsevier.com/retrieve/pii/S1574119207000296
http://ismir2004.ismir.net/proceedings/p032-page-158-paper191.pdf
http://ismir2004.ismir.net/proceedings/p032-page-158-paper191.pdf
http://portal.acm.org/citation.cfm?doid=1236360.1236408
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1222286
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1222286
http://www.atypon-link.com/INT/doi/abs/10.1386/padm.1.1.67/1
http://www.atypon-link.com/INT/doi/abs/10.1386/padm.1.1.67/1

Bibliography Section Bibliography

[9] Frédéric Bettens and Todor Todoroff. Real-time dtw-based gesture recog-
nition external object for max/msp and puredata. In Proceedings of the
6th Sound and Music Computing Conference, pages 23–25, Porto, Portugal,
2009.

[10] Frédéric Bevilacqua, Lisa Naugle, and Isabel Valverde. Virtual dance
and music environment using motion capture. In IEEE Multimedia
Technology and Applications Conference Proceedings, pages 1–4, Irvine,
CA, 2001. URL http://music.arts.uci.edu/dobrian/motioncapture/

Bevilacqua-mtac-proceeding.pdf.

[11] Frédéric Bevilacqua, Fabrice Guédy, Norbert Schnell, Emmanuel Fléty, and
Nicolas Leroy. Wireless sensor interface and gesture-follower for music
pedagogy. New Interfaces For Musical Expression, 2007. URL http://

portal.acm.org/citation.cfm?id=1279740.1279762.

[12] Tina Blaine. The Convergence of Alternate Controllers and Musical Inter-
faces in Interactive Entertainment. In Proceedings of the 2005 conference on
New interfaces for musical expression, pages 27–33, Singapore, Singapore,
2005. National University of Singapore.

[13] Ginevra Castellano, Roberto Bresin, Antonio Camurri, and Gualtiero Volpe.
Expressive Control of Music and Visual Media by Full-Body Movement. In
Proceedings of 2007 Conference on New Interfaces for Musical Expression,
pages 390–391, New York, NY, 2007.

[14] Nick Crampton, Kaitlyn Fox, Hannah Johnston, and Anthony Whitehead.
Dance, Dance Evolution: Accelerometer Sensor Networks as Input to Video
Games. In 2007 IEEE International Workshop on Haptic, Audio and Visual
Environments and Games, pages 107–112. IEEE, Oktober 2007. ISBN
978-1-4244-1570-0. doi: 10.1109/HAVE.2007.4371597. URL http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4371597.

[15] Annet Dekker. Synaesthetic Performance In The Club Scene. In
Grethe Mitchell, editor, 3rd international conference on Computa-
tional Semiotics for Games and New Media, pages 24–30, Teeside,
UK, 2003. URL http://www.cosignconference.org/downloads/papers/

dekker_cosign_2003.pdf.

[16] Annet Dekker. Dancing in the Light of an Information Overload. In Inter-
Society for the Electronic Arts Conference 2004, pages 18–21, 2004. URL
http://www.montevideo.nl/en/nieuws/detail.php?id=67.

[17] Simon Dixon. Evaluation of the Audio Beat Tracking System BeatRoot.
Journal of New Music Research, 36(1):39–50, März 2007. ISSN 0929-8215.
doi: 10.1080/09298210701653310. URL http://www.informaworld.com/

openurl?genre=article&doi=10.1080/09298210701653310.

111 of 117

http://music.arts.uci.edu/dobrian/motioncapture/Bevilacqua-mtac-proceeding.pdf
http://music.arts.uci.edu/dobrian/motioncapture/Bevilacqua-mtac-proceeding.pdf
http://portal.acm.org/citation.cfm?id=1279740.1279762
http://portal.acm.org/citation.cfm?id=1279740.1279762
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4371597
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4371597
http://www.cosignconference.org/downloads/papers/dekker_cosign_2003.pdf
http://www.cosignconference.org/downloads/papers/dekker_cosign_2003.pdf
http://www.montevideo.nl/en/nieuws/detail.php?id=67
http://www.informaworld.com/openurl?genre=article&doi=10.1080/09298210701653310
http://www.informaworld.com/openurl?genre=article&doi=10.1080/09298210701653310

Bibliography Section Bibliography

[18] Magy Seif El-Nasr and Thanos Vasilakos. DigitalBeing: an Ambient In-
telligent Dance Space. Informatics and Computer Science Intelligent Sys-
tems Applications, 16802, 2006. URL http://magyweb.net/conference/

FuzzIeee2006.pdf.

[19] Magy Seif El-Nasr and Thanos Vasilakos. DigitalBeing — Using the
Environment as an Expressive Medium for Dance. Information Sci-
ences, 178(3):663–678, Februar 2008. ISSN 00200255. doi: 10.1016/j.
ins.2007.08.025. URL http://linkinghub.elsevier.com/retrieve/pii/

S0020025507004069.

[20] A. Engström, M. Esbjörnsson, and O. Juhlin. Mobile collaborative live video
mixing. In Proceedings of the 10th international conference on Human
computer interaction with mobile devices and services - MobileHCI ’08, page
157, New York, New York, USA, 2008. ACM Press. ISBN 9781595939524.
doi: 10.1145/1409240.1409258. URL http://portal.acm.org/citation.

cfm?doid=1409240.1409258.

[21] Urs Enke. DanSense: Rhythmic Analysis of Dance Movements Us-
ing Acceleration-Onset Times. Master thesis, RWTH Aachen Univer-
sity, 2006. URL http://hci.rwth-aachen.de/materials/publications/

enke2006.pdf.

[22] Mark Christopher Feldmeier. Large group musical interaction using dispos-
able wireless motion sensors. Master thesis, Massachusetts Institute of Tech-
nology, 2002. URL http://www.media.mit.edu/resenv/pubs/theses/

Feldmeier-SM.pdf.

[23] Emmanuel Fléty. The Wise Box: a multi-performer wireless sensor inter-
face using WiFi and OSC. In Proceedings of the 2005 conference on New
interfaces for musical expression, pages 266–267. National University of Sin-
gapore, 2005. URL http://portal.acm.org/citation.cfm?id=1085939.

1086024.

[24] Minoru Fujimoto, Naotaka Fujita, Yoshinari Takegawa, Tsutomu Terada, and
Masahiko Tsukamoto. Musical B-boying: A Wearable Musical Instrument
by Dancing. Lecture Notes In Computer Science; Vol. 5309, 2008. doi: 10.
1007/978-3-540-89222-9_17. URL http://portal.acm.org/citation.

cfm?id=1483460.1483478.

[25] Carrie Gates, Sriram Subramanian, and Carl Gutwin. DJs’ perspectives
on interaction and awareness in nightclubs. In Proceedings of the 6th
ACM conference on Designing Interactive systems - DIS ’06, page 70, New
York, New York, USA, 2006. ACM Press. ISBN 1595933670. doi: 10.
1145/1142405.1142418. URL http://portal.acm.org/citation.cfm?

doid=1142405.1142418.

[26] Masataka Goto and Yoichi Muraoka. Music Understanding At The Beat
Level Real-time Beat Tracking For Audio Signals, pages 157–176. Lawrence
Erlbaum Associates, 1998.

112 of 117

http://magyweb.net/conference/FuzzIeee2006.pdf
http://magyweb.net/conference/FuzzIeee2006.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0020025507004069
http://linkinghub.elsevier.com/retrieve/pii/S0020025507004069
http://portal.acm.org/citation.cfm?doid=1409240.1409258
http://portal.acm.org/citation.cfm?doid=1409240.1409258
http://hci.rwth-aachen.de/materials/publications/enke2006.pdf
http://hci.rwth-aachen.de/materials/publications/enke2006.pdf
http://www.media.mit.edu/resenv/pubs/theses/Feldmeier-SM.pdf
http://www.media.mit.edu/resenv/pubs/theses/Feldmeier-SM.pdf
http://portal.acm.org/citation.cfm?id=1085939.1086024
http://portal.acm.org/citation.cfm?id=1085939.1086024
http://portal.acm.org/citation.cfm?id=1483460.1483478
http://portal.acm.org/citation.cfm?id=1483460.1483478
http://portal.acm.org/citation.cfm?doid=1142405.1142418
http://portal.acm.org/citation.cfm?doid=1142405.1142418

Bibliography Section Bibliography

[27] Niall Griffith and Mikael Fernström. LiteFoot: A floor space for recording
dance and controlling media. In Proceedings of the 1998 International
Computer Music Conference, pages 475–481, 1998.

[28] Carlos Guedes. Extracting Musically-Relevant Rhythmic Information from
Dance Movement by Applying Pitch Tracking Techniques to a Video Signal.
In Proceedings of the 2006 Sound and Music Computing Conference, pages
25–33, Marseille, France, 2006.

[29] Jürg Gutknecht, Irena Kulka, Paul Lukowicz, and Tom Strieker. Advances
in Expressive Animation in the Interactive Performance of a Butoh Dance,
pages 418–433. Springer, 2008. doi: 10.1007/978-3-540-79486-8_33.
URL http://www.springerlink.com/index/hq3q49n1484q6n75.pdf.

[30] Aristotelis Hadjakos, Erwin Aitenbichler, and Max Mühlhäuser. SYSSOMO:
A Pedagogical Tool for Analyzing Movement Variants Between Different
Pianists. In 5th International Conference on Enactive Interfaces, Pisa, Italy,
2008. Edizione ETS.

[31] Aristotelis Hadjakos, Erwin Aitenbichler, and Max Mühlhäuser. Potential
Use of Inertial Measurement Sensors for Piano Teaching Systems : Motion
Analysis of Piano Playing Patterns. In Kia C. Ng, editor, Proceedings of the
4th i-Maestro Workshop on Technology - Enhanced Music Education, pages
61–68, 2008.

[32] Jason A Hockman, Marcelo M Wanderley, and Ichiro Fujinaga. Real-time
Phase Vocoder Manipulation by Runner’s Pace. In The 9th International
Conference on New Interfaces for Musical Expression, pages 90–93, Pitts-
burgh, PA, 2009. URL http://archive.notam02.no/arkiv/proceedings/

NIME2009/nime2009/pdf/author/nm090090.pdf.

[33] Dennis Hromin, Michael Chladil, Natalie Vanatta, David Naumann, Susanne
Wetzel, Farooq Anjum, and Ravi Jain. CodeBLUE: a bluetooth interactive
dance club system. In GLOBECOM ’03. IEEE Global Telecommunications
Conference, volume 5, pages 2814–2818. IEEE, 2003. ISBN 0-7803-7974-8.
doi: 10.1109/GLOCOM.2003.1258748. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=1258748.

[34] Eric Johnstone. A MIDI Foot Controller - The PodoBoard. In International
Computer Music Conference, pages 123 – 126, San Francisco, CA, 1991.

[35] Yoonji Kim, Donggi Jung, Sehwi Park, Jumin Chi, Taewoo Kim, and Seny
Lee. The Shadow Dancer: A New Dance Interface with Interactive Shoes.
International Conference on Cyberworlds, page 3, 2008. URL http://

portal.acm.org/citation.cfm?id=1488624.

[36] Kai Kunze, Michael Barry, Ernst A. Heinz, Paul Lukowicz, Dennis Majoe, and
Jürg Gutknecht. Towards Recognizing Tai Chi — An Initial Experiment Using
Wearable Sensors. In IFAWC 2006 - Third International Forum on Applied

113 of 117

http://www.springerlink.com/index/hq3q49n1484q6n75.pdf
http://archive.notam02.no/arkiv/proceedings/NIME2009/nime2009/pdf/author/nm090090.pdf
http://archive.notam02.no/arkiv/proceedings/NIME2009/nime2009/pdf/author/nm090090.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1258748
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1258748
http://portal.acm.org/citation.cfm?id=1488624
http://portal.acm.org/citation.cfm?id=1488624

Bibliography Section Bibliography

Wearable Computing, Bremen, Germany, 2006. doi: 10.1.1.109.1322. URL
TowardsRecognizingTaiChi---AnInitialExperimentUsingWearableSensors.

[37] Celine Latulipe and Sybil Huskey. Dance. Draw: exquisite interaction. In
Proceedings of the 22nd British CHI Group Annual Conference on HCI
2008: People and Computers XXII: Culture, Creativity, Interaction-Volume
2, pages 47–51. British Computer Society Swinton, UK, UK, 2008. URL
http://www.bcs.org/upload/pdf/ewic_hc08_v2_paper12.pdf.

[38] Daniel Lemire. Faster retrieval with a two-pass dynamic-time-warping
lower bound. Pattern Recognition, 42(9):2169–2180, 2009. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0031320308004925.

[39] Xiubo Liang, Qilei Li, Xiang Zhang, Shun Zhang, and Weidong Geng.
Performance-driven motion choreographing with accelerometers. Com-
puter Animation and Virtual Worlds, 20, 2(3):89–99, 2009. doi:
10.1002/cav. URL http://www.ingentaconnect.com/content/jws/cav/

2009/00000020/F0020002/art00003.

[40] Jani Mäntyjärvi, Johan Himberg, and Tapio Seppänen. Recognizing human
motion with multiple acceleration sensors. In 2001 IEEE International
Conference on Systems, Man and Cybernetics. e-Systems and e-Man for
Cybernetics in Cyberspace, pages 747–752. Ieee, 2001. ISBN 0-7803-7087-2.
doi: 10.1109/ICSMC.2001.973004. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=973004.

[41] M.T. Marshall, N. Peters, A.R. Jensenius, J. Boissinot, M.M. Wanderley,
and J. Braasch. On the development of a system for gesture control
of spatialization. In Proceedings of the International Computer Music
Conference, number Pulkki 1997, page 260âC“266, 2006. URL http:

//www.idmil.org/_media/wiki/icmc2006_marshall_peters_et_al.pdf.

[42] Lisa McElligott, Michelle Dillon, Krispin Leydon, Bruce Richardson, Mikael
Fernström, and Joseph A. Paradiso. ’ForSe FIElds’ - Force Sensors for
Interactive Environments. In Gaetano Borriello and Lars E. Holmquist,
editors, UbiComp 2002: Ubiquitous Computing, volume 2498 of Lecture
Notes in Computer Science, pages 168–175, Göteborg, Sweden, 2002.
Springer. ISBN 978-3-540-44267-7. doi: 10.1007/3-540-45809-3_13.
URL http://www.springerlink.com/index/10.1007/3-540-45809-3_13.

[43] Luiz Naveda and Marc Leman. Representation of Samba dance gestures,
using a multi-modal analysis approach. In 5th International Conference
on Enactive Interfaces, pages 68–74, Pisa, Italy, 2008. Edizione ETS. doi:
1854/LU-503783. URL http://hdl.handle.net/1854/LU-503783.

[44] Kia C. Ng. Music via Motion: Transdomain Mapping of Motion and Sound
for Interactive Performances. Proceedings of the IEEE, 92(4):645–655, April
2004. ISSN 0018-9219. doi: 10.1109/JPROC.2004.825885. URL http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1278688.

114 of 117

Towards Recognizing Tai Chi --- An Initial Experiment Using Wearable Sensors
http://www.bcs.org/upload/pdf/ewic_hc08_v2_paper12.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0031320308004925
http://linkinghub.elsevier.com/retrieve/pii/S0031320308004925
http://www.ingentaconnect.com/content/jws/cav/2009/00000020/F0020002/art00003
http://www.ingentaconnect.com/content/jws/cav/2009/00000020/F0020002/art00003
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=973004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=973004
http://www.idmil.org/_media/wiki/icmc2006_marshall_peters_et_al.pdf
http://www.idmil.org/_media/wiki/icmc2006_marshall_peters_et_al.pdf
http://www.springerlink.com/index/10.1007/3-540-45809-3_13
http://hdl.handle.net/1854/LU-503783
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1278688
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1278688

Bibliography Section Bibliography

[45] Joseph A. Paradiso and Eric Hu. Expressive footwear for computer-
augmented dance performance. In First International Symposium on Wear-
able Computers (ISWC ’97), pages 165–166. IEEE Computer Society, 1997.
ISBN 0-8186-8192-6. doi: 10.1109/ISWC.1997.629936. URL http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=629936.

[46] Joseph A. Paradiso, Craig Abler, Kai-yuh Hsiao, and Matthew Reynolds. The
Magic Carpet: Physical Sensing for Immersive Environments. In Conference
on Human Factors in Computing Systems, pages 277–278. ACM New York,
NY, USA, 1997. URL http://portal.acm.org/citation.cfm?id=1120391.

[47] Joseph A. Paradiso, Eric Hu, and Kai-yuh Hsiao. Instrumented footwear
for interactive dance. In XII Colloquium on Musical Informatics, vol-
ume 24, pages 89–92, Gorizia, Italy, 1998. URL http://www.media.mit.

edu/resenv/pubs/papers/98_07_CMI_Shoe.pdf.

[48] Joseph A. Paradiso, Kai-yuh Hsiao, and Eric Hu. Interactive music for
instrumented dancing shoes. In Proceedings of the 1999 International
Computer Music Conference, pages 453–456, 1999. URL http://gn.www.

media.mit.edu/resenv/pubs/papers/99_10_ICMC_Shoe.pdf.

[49] Bo Peng, Gang Qian, and Yunqian Ma. Recognizing body poses using
multilinear analysis and semi-supervised learning. Pattern Recognition
Letters, 30(14):1289–1294, 2009. ISSN 0167-8655. URL http://portal.

acm.org/citation.cfm?id=1595906.1596208.

[50] Vytautas Perlibakas. Distance measures for PCA-based face recognition.
Pattern Recognition Letters, 25(6):711–724, 2004. ISSN 01678655. doi:
10.1016/j.patrec.2004.01.011. URL http://linkinghub.elsevier.com/

retrieve/pii/S0167865504000248.

[51] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. Similarity
between euclidean and cosine angle distance for nearest neighbor queries.
In Proceedings of the 2004 ACM symposium on Applied computing, pages
1232–1237, New York, NY, 2004. ISBN 1581138121. doi: 10.1145/967900.
968151. URL http://portal.acm.org/citation.cfm?id=968151.

[52] Chotirat Ann Ratanamahatana and Eamonn Keogh. Three myths about
dynamic time warping data mining. In Proceedings of SIAM International
Conference on Data Mining, volume 05, 2005. URL http://siam.org/

proceedings/datamining/2005/dm05_50ratanamahatanac.pdf.

[53] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L. Littman.
Activity Recognition from Accelerometer Data. Proceedings of the National
Conference on Artificial Intelligence, 20(3):1541–1546, 2005. URL http:

//www.aaai.org/Papers/IAAI/2005/IAAI05-013.pdf.

[54] Hiroaki Sakoe and Seibi Chiba. Dynamic Programming Algorithm Optimiza-
tion for Spoken Word Recognition. IEEE Transactions on Acoustics, Speech
and Signal Processing, 26(1):43–49, 1978. doi: 10.1.1.114.3782.

115 of 117

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=629936
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=629936
http://portal.acm.org/citation.cfm?id=1120391
http://www.media.mit.edu/resenv/pubs/papers/98_07_CMI_Shoe.pdf
http://www.media.mit.edu/resenv/pubs/papers/98_07_CMI_Shoe.pdf
http://gn.www.media.mit.edu/resenv/pubs/papers/99_10_ICMC_Shoe.pdf
http://gn.www.media.mit.edu/resenv/pubs/papers/99_10_ICMC_Shoe.pdf
http://portal.acm.org/citation.cfm?id=1595906.1596208
http://portal.acm.org/citation.cfm?id=1595906.1596208
http://linkinghub.elsevier.com/retrieve/pii/S0167865504000248
http://linkinghub.elsevier.com/retrieve/pii/S0167865504000248
http://portal.acm.org/citation.cfm?id=968151
http://siam.org/proceedings/datamining/2005/dm05_50ratanamahatanac.pdf
http://siam.org/proceedings/datamining/2005/dm05_50ratanamahatanac.pdf
http://www.aaai.org/Papers/IAAI/2005/IAAI05-013.pdf
http://www.aaai.org/Papers/IAAI/2005/IAAI05-013.pdf

Bibliography Section Bibliography

[55] Stan Salvador and Philip Chan. FastDTW: Toward Accurate Dynamic Time
Warping in Linear Time and Space. In KDD Workshop on Mining Temporal
and Sequential Data, pages 70–80, 2004. URL http://cs.fit.edu/~pkc/

papers/tdm04.pdf.

[56] Steven Salzberg. Distance metrics for instance-based learning. In Proceed-
ings of the 6th International Symposium on Methodologies for Intelligent
Systems, pages 399–408. Springer, 1991. URL http://www.springerlink.

com/index/70132j9318g70474.pdf.

[57] William A. Sethares and Thomas W. Staley. Periodicity transforms. IEEE
transactions on Signal Processing, 47(11):2953–2964, 1999. URL http:

//minds.wisconsin.edu/bitstream/1793/10052/1/file_1.pdf.

[58] Wayne Siegel. Two compositions for interactive dance. In Proc. of the Int.
Computer Music Conf.(ICMC99), pages 56–59, 1999. URL http://mtg.

upf.edu/mosart/papers/p04.pdf.

[59] Wayne Siegel and Jens Jacobsen. The challenges of interactive dance: An
overview and case study. Computer Music Journal, 22(4):29âC“43, 1998.
URL http://www.jstor.org/stable/3680892.

[60] Jacob Smith. I Can See Tomorrow In Your Dance: A Study of Dance Dance
Revolution and Music Video Games. Journal of Popular Music Studies,
16(1):58–84, 2004. ISSN 1524-2226. doi: 10.1111/j.0022-4146.2004.
00011.x. URL http://www.blackwell-synergy.com/links/doi/10.1111%

2Fj.0022-4146.2004.00011.x.

[61] Prashant Srinivasan, David Birchfield, Gang Qian, and Assegid Kidané. A
pressure sensing floor for interactive media applications. ACM International
Conference Proceeding Series; Vol. 265, 2005. URL http://portal.acm.

org/citation.cfm?id=1178526.

[62] D. Andrew Stewart. SonicJumper composer. In International Conference
on New Interfaces for Musical Expression (NIME06), pages 103–105, Paris,
France, 2006. URL http://www.nime.org/2006/proc/nime2006_103.pdf.

[63] Kai-Tai Tang, Howard Leung, Taku Komura, and Hubert P. H. Shum. Finding
repetitive patterns in 3D human motion captured data. Conference On
Ubiquitous Information Management And Communication, page 7, 2008.
URL http://portal.acm.org/citation.cfm?id=1352876.

[64] Ryan Ulyate and David Bianciardi. The Interactive Dance Club:
Avoiding Chaos in a Multi-Participant Environment. Computer Mu-
sic Journal, 26(3):40–49, 2002. ISSN 0148-9267. doi: 10.1162/
014892602320582963. URL http://www.mitpressjournals.org/doi/

abs/10.1162/014892602320582963.

[65] Rudolf von Laban. Principles of dance and movement notation. Macdonald
and Evans, London, 1956.

116 of 117

http://cs.fit.edu/~pkc/papers/tdm04.pdf
http://cs.fit.edu/~pkc/papers/tdm04.pdf
http://www.springerlink.com/index/70132j9318g70474.pdf
http://www.springerlink.com/index/70132j9318g70474.pdf
http://minds.wisconsin.edu/bitstream/1793/10052/1/file_1.pdf
http://minds.wisconsin.edu/bitstream/1793/10052/1/file_1.pdf
http://mtg.upf.edu/mosart/papers/p04.pdf
http://mtg.upf.edu/mosart/papers/p04.pdf
http://www.jstor.org/stable/3680892
http://www.blackwell-synergy.com/links/doi/10.1111%2Fj.0022-4146.2004.00011.x
http://www.blackwell-synergy.com/links/doi/10.1111%2Fj.0022-4146.2004.00011.x
http://portal.acm.org/citation.cfm?id=1178526
http://portal.acm.org/citation.cfm?id=1178526
http://www.nime.org/2006/proc/nime2006_103.pdf
http://portal.acm.org/citation.cfm?id=1352876
http://www.mitpressjournals.org/doi/abs/10.1162/014892602320582963
http://www.mitpressjournals.org/doi/abs/10.1162/014892602320582963

Bibliography Section Bibliography

[66] Todd Winkler. Making Motion Musical: Gesture Mapping Strategies for
Interactive Computer Music. In Proceedings for the 1995 International
Computer Music Conference, San Francisco, CA, 1995.

[67] Todd Winkler. Creating Interactive Dance with the Very Nervous System.
In Proceedings of Connecticut College Symposium on Arts and Technology,
1997. URL http://www.brown.edu/Departments/Music/sites/winkler/

/papers/Interactive_Dance_1997.pd.pdf.

[68] Todd Winkler. Audience Participation and Response in Movement-Sensing
Installations. In Proceedings of the 2000 International Computer Music
Conference, 2000.

117 of 117

http://www.brown.edu/Departments/Music/sites/winkler//papers/Interactive_Dance_1997.pd.pdf
http://www.brown.edu/Departments/Music/sites/winkler//papers/Interactive_Dance_1997.pd.pdf

	List of Figures
	Abstract
	German Abstract
	Acknowledgements
	Ehrenwörtliche Erklärung
	Definition of Musical Terms
	Introduction
	Motion patterns
	Interactive Dance
	Interactive Dance in Art
	Interactive Dance in Video Games
	Interactive Dance in Clubs

	Overview

	Related Work
	Sensors for Interactive Dance
	Sensing Floors
	Sensors in Shoes
	Camera-Based Systems
	Wearable Sensors
	Additional Sensor Options

	Recognition Algorithms
	Hidden Markov Models
	Dynamic Time Warping
	Non-Temporal Feature Classification
	Algorithms Utilizing Periodic Subspaces

	Wearable Sensor System
	Requirements
	Sensor System Choices

	Hardware
	Sensors
	Sensor Interface Board
	Embedded System
	Sensor Placement

	Embedded Software

	Dance Pattern Recognition
	Signal Segmentation
	Movement parameters
	Block Similarities
	Block Definition
	Whole Block Level Similarities
	Block Sequence Similarities

	Classification

	Evaluation
	Recording Application
	Time Critical Modules
	User Interaction
	Dance Description Format
	Recorded Data Exchange Format

	Evaluation Application
	Test Definition
	Identifier Mapping
	Output

	Evaluation Setting
	Evaluation Procedure
	Evaluation Issues

	Results
	Suitable Dynamic Time Warping Parameters
	Two Motion Comparison
	Influence of Feature Choices
	Influence of Sensor Choices
	Influence of Sequence Length
	Comparison of Several Recordings
	Comparison of Error Rate by Dance Move
	Threshold Choice

	Conclusion & Future Work
	Conclusion
	Future Work
	Hardware
	Algorithm
	Evaluation

	Bibliography

