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ABSTRACT 
We present Quantum games, physical games that resemble corre-
sponding real–world sports—except that the ball exists only in the 
players’ imagination. We demonstrate Quantum versions of team 
handball and air hockey. A computer system keeps score by track-
ing players using a Microsoft Kinect (air hockey) or a webcam 
(handball), simulates the physics of the ball, and reports ball 
interactions and scores back using auditory feedback. 

The key element that makes Quantum games playable is a novel 
type of physics engine that evaluates not one, but samples the set 
of all plausible ball trajectories in parallel. Before choosing a 
trajectory to realize, the engine massively increases the probabil-
ity of outcomes that lead to enjoyable gameplay, such as goal 
shots, but also successful passes and intercepts that lead to fluid 
gameflow. The same mechanism allows giving a boost to inexpe-
rienced players and implementing power–ups.   

Categories and Subject Descriptors 
H.5.2 [Information interfaces and presentation]: User Interfac-
es: Input Devices and Strategies, Interaction Styles 

General Terms 
Design, Human Factors 

Keywords 
Games, probabilistic, imaginary 

1. INTRODUCTION 
Augmented reality games, such as Human Pacman [3] and AR 
Quake [9] bring the benefits of virtual games, such as game modi-
fiers and power–ups into a physical game. They do so using mo-
bile or head–mounted displays. Unfortunately, as with traditional 
video games, these games require players to focus on screens 
rather than onto the physical world and each other. 

In this paper, we explore what happens when we leave all displays 
out and build a game based on the concepts of spatial, non-visual 
interaction inspired by screenless mobile devices (imaginary 
interfaces [4]). 

2. A QUANTUM GAME 
Figure 1a shows two players playing Quantum Air Hockey, a 
quantum game that is played on a regular table. The game resem-
bles the corresponding real–world game, Air Hockey, except that 
the puck exists only in the players’ imagination. The overhead 
Kinect camera [11] tracks the game by observing players’ arms 
and hands on the table. A loudspeaker provides players with 
updates on the state of the game, such as “Blue shoots … inter-
cepted by Red”. 

The main reason for making the puck imaginary is that this enable 
gaming functionality that can be achieved in virtual games, but 
not in physical games, in particular power-ups and player balanc-
ing, thus enabling players of different skill levels to play together. 
In games with a physical ball or puck, there is a single clear reali-
ty. Quantum games, in contrast, do not have this obvious reality. 
This allows Quantum games to make choices of outcomes, allow-
ing them to implement more interesting game play. 

 

Figure 1: (a) In this game of Quantum Air Hockey, the left 
player is trying to score. (b) He is shooting the imaginary puck 
at Red’s goal, but his shot is blocked. (c) In a second attempt, 
Blue plays the puck via the left wall and scores. A Kinect cam-

era mounted above tracks players’ hands and mallets. 

The game starts when the puck drops at a known spot in Blue’s 
half. This is communicated by an audio announcement proclaim-
ing that the puck was dropped in front of Blue’s goal. (b) Blue 
shoots the puck towards Red’s goal. Red blocks the ball and 
(c) Blue shoots again, this time via the wall, avoiding the mallet 
red had placed in front of his goal—goal! 

The maybe obvious question is how this game can be playable. 
How can players successfully hit a puck that they cannot see? The 
secret is the particular type of physics engine which we created 
for quantum games. 

Figure 2 shows a debug view (this view is never seen by the play-
ers—there is no visual feedback in Quantum games) of what 
happened under the hood during the previous play. We see that 
what presumably is a single puck is represented as a collection of 
a puck particles (here we use 1000), each of which represents a 
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location where the puck may be located with 1/1000 probability. 
Accordingly, the Quantum physics engine computes trajectories 
for each particle independently.  

Figure 2a: As the puck is dropped into the game, it instantly 
breaks down into a collection of puck particles. (b) While Blue is 
getting ready to shoot, the particles spread out—we describe this 
mechanism in detail later. (c) Blue takes his shot and Blue’s mal-
let collides with a larger number of particles. This triggers the 
shot. (d) Each particle follows a different trajectory; the engine 
thus needs to decide which one of them to realize. It computes the 
trajectories of all particles at once, here visualized as lines, and 
groups particles by common fate, such as “goal via the left wall” 
or “intercepted by opposing mallet” etc. It counts the particles for 
each fate and uses these counts to computes probabilities for each 
possible outcome. (d) The Quantum game engine modifies proba-
bilities, to make desirable outcomes more likely, here the inter-
cept. (e) The engine draws an event from the resulting probability 
distribution and determines that Red has blocked the ball (Figure 
1b) and plays back a collision sound. (e) The blocked particles 
spread out at the new location. (f) Blue takes another shot, this 
time via the wall (as in Figure 1c) and scores the goal (g).  

We will look at the underlying algorithms in more detail in the 
“Algorithms” Section. 

 

Figure 2: A debug view illustrating how the system processed 
the game actions we just saw in Figure 2 

2.1 Extension to whole-body physical games 
Quantum air hockey is just one possible representative of a Quan-
tum game. Figure 3a shows Quantum team handball, an example 
for a whole body Quantum game. Again, the game is tracked from 
above. 

3. CONTRIBUTION 
The main contribution of Quantum games is the idea to play with 
an invisible or “imaginary” ball and how to resolve the apparent 
absurdity using a probabilistic physics engine. Because of this 
special type of physics engine, Quantum games create interesting 
game play not despite, but because of the high level of uncertainty 
resulting from the lack of visual feedback. 

While we think of Quantum games primarily as games, we can 
also look at them as imaginary interfaces [4]. In this case, our 
contribution is that we explore how to create shared imaginary 
interfaces, i.e., spatial, non–visual interfaces that multiple users 
are engaged in simultaneously. 

 

Figure 3: (a) In this game of Quantum team handball, the 
orange player is trying to pass the ball to his pink teammate. 
(b) The underlying game engine represents the ball as a set of 

particles each representing one plausible ball trajectory. 

4. DESIGN RATIONALE 
Quantum games are designed to achieve two design goals: game 
of skill and gameflow. While these are achieved by a wide range 
of traditional visual games, the lack of visual feedback requires us 
to take a different approach. 

4.1 Quantum Games are Games of Skill 
In order to require skill, players need to understand how to act in 
order to win. Traditional games achieve this by hinting players 
using visual feedback. Quantum games, however, cannot offer 
such feedback. 

What makes Quantum games playable is that players know how to 
play before they start. Quantum games accomplish this by mim-
icking an existing sport. Even though Quantum games’ inner 
workings are probabilistic, Quantum games are designed to afford 
a “Newtonian interpretation”, i.e., they suggest the conceptual 
model that users interact with a single, physical (yet invisible) 
ball. This metaphor not only allows players to transfer their 
knowledge of the rules of play, but also leverages their previous 
experience with real–world physics, such as ball ballistics. 

To convey the metaphor, (1) Quantum games’ auditory feedback 
conveys only discreet, Newtonian events. Internal properties, such 
as probabilities remain hidden from the user at all times. (2) To 
maintain the illusion of a Newtonian game, Quantum games 
sample only game moves that are plausible under a Newtonian 
interpretation. 

Playing a Quantum game therefore requires the same skills as the 
sport that inspired it. In order to successfully anticipate a shot, a 
soccer goalie has to (1) read the opposing player’s body language, 
(2) imagine ball trajectories, and (3) quickly move to the extrapo-
lated location. Quantum games require the same skills. 



4.2 Quantum Games Maintain Gameflow 
If our goal were only to require skill, a single–ball design would 
do. However, there would not be much gameflow, because players 
tend to have little success when interacting with an invisible ball. 
The Quantum engine resolves this by shuffling probabilities 
around, so as to increase the likelihood of moves that make for 
good gameflow, that keep the ball in the game, and allow for 
longer and more complex moves. Adjusting probabilities does not 
affect consistency with the Newtonian interpretation—it may 
cause the engine to realize unlikely moves, but never implausible 
moves. 

5. Benefits 
Quantum games combine properties of different types of games. 
Similar to physical sports, Quantum games players interact with 
each other directly, without an intermediary screen. The design 
also eliminates the need for projectors, which allows applying the 
concept to potentially very large installations. 

Similar to computer games, Quantum games enable game me-
chanics that bend or break traditional physics, such as wormholes 
and power–ups. We can also make players of different experience 
levels compatible using a handicap system. Similar to computer 
games, the game is “safe” in that there is no physical ball flying 
around in the living room. 

6. Quantum Games are a Family of Games 
Not all physical ball games make equally good Quantum games. 
Since Quantum games tweak the probabilities of different inter-
pretations of the same action, a game has to offer moves that offer 
such multiple outcomes. At first glance, this is the case for essen-
tially all ball games: The choice between a player hitting/catching 
the ball or not exists in baseball, volleyball, and dozens of other 
sports, down to golf. All these sports can, in theory, be imple-
mented as Quantum sports, but not all of them benefit equally. 

What distinguishes truly suitable games is that they offer situa-
tions in which players (ideally from opposite teams) compete for 
the ball. When a soccer player, for example, passes the ball to-
wards the goal, players from team A and from team B are trying to 
get to it. This type of move provides the Quantum engine with 
true choice, because it allows rewarding skillful play without 
breaking gameflow: if the players on team A play poorly, the 
engine can penalize them by favoring the players on team B, 
rather than letting the ball go out. 

 

Figure 4: Probability distribution in Quantum basketball 

This way, gameflow is preserved and the Quantum engine has 
simultaneously realized both of its main objectives: “game of 
skill” and “gameflow”. This is different from the “hit/catch the 
ball or out” pattern mentioned earlier, where penalizing poor play 
lets the ball go out, thus breaking the gameflow. 

The more often the “A vs. B (vs. out)” pattern occurs in a game, 
the more the game benefits from the Quantum engine. Examples 

include a wide range of sports, including soccer, football, basket-
ball; the latter we have started to implement (Figure 4). 

7. Related Work 
Probabilistic methods have been applied to a range of interactions, 
such as touch events and gestures [10]. Chenney et al. use Markov 
chains to generate plausible–looking animations that satisfy a 
certain set of constraints [2]. Twigg and James allow users to 
create animations by first generating many sequences and then 
eliminating all those that do not meet a given constraint [12]. 

The concept of introducing virtual game objects into a physical 
scene has been explored by mixed reality and pervasive games 
[6]. Airhockey Over a Distance locally re–enacts the shots of an 
opponent located at a remote site [7]. Players of AR²Hockey use 
physical mallets to shoot a puck that is only visible on head–
mounted displays [8]. Jebara et al. compute the current best shot 
in pool billiard and display its trajectories on a head–mounted 
display [5]. Unlike these games, the ball in Quantum games is 
never shown, which allows it to choose from a wider set of out-
comes without leading to a disconnect with reality. 

8. Quantum Games System Architecture 
As illustrated by Figure 5, a Quantum game system consists of 
three main components. A tracking system tracks all physical 
objects, i.e., the players and the playfield, including boundaries, 
goals/baskets, and power–up respawn locations. It reports these to 
the Quantum engine. The Quantum engine maintains the spatial 
model of the scene and computes plausible interactions using its 
probabilistic model. 

 

Figure 5: Quantum games system 

Whenever an event happens the Quantum engine reports probabil-
ities to the game engine, which processes probabilities by apply-
ing modifiers, such as handicaps and power–ups. It then draws an 
event from the resulting probability distribution and returns the 
decision, which it conveys to the players using auditory feedback. 
It also informs the Quantum engine about the event so as to allow 
it to update its model. The game engine itself, however, has no 
notion of space—all it does it manipulate probabilities. 

We now discuss these components in additional detail. 

8.1 Tracking System 
Implementing Quantum games generally requires determining the 
position and orientation of all physical objects on the play field, 
functionality that can, for example, be provided by a motion 
capture system. Any specific Quantum game, however, typically 
requires only a subset of these parameters. 

8.1.1 Using Kinect For Ad–hoc Quantum Air Hockey 
Using a Kinect camera for tracking, Quantum air hockey allows 
for ad-hoc gaming on regular tables. To start the game, players 
put the playfield markers on the table, position a Kinect camera 
above the playfield, and initialize the game. The game runs off a 
laptop, which also provides the auditory feedback. As shown in 
Figure 6, our system processes Kinect images as follows. (a) 
Upon start, our system extracts the playfield markers from the 
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color image and (b) captures the static depth background. During 
playtime, our system subtracts from (c) the raw image the stored 
background, thus creating (d) a mask of players’ arms (as in [13]). 
(e) We obtain connected components in the mask image, extract 
the 20–pixel environment around the point that is farthest from the 
respective edge of the playfield minus a constant offset (red dot in 
Figure 6e). We stop processing if this point is too far removed 
from the table, such that hovering hands produce no input to the 
game. Assuming that mallets are attached to players’ hands, we 
derive their final locations using a high-gain Kalman filter on the 
2D hand locations and rectify coordinates according to the distor-
tion of the playfield as shown in Figure 6f. We forward the final 
coordinates to the Quantum Game. 

 

Figure 6: Our Kinect-based tracking captures the (a) playfield 
and (b) the static depth background upon startup. (c) During 

runtime, subtracting the background results in a mask of 
players’ arms (d), from which we infer the locations of play-
ers’ hands and thus mallets (e). (f) Smoothed mallet locations 

rectified according to the playfield markers. 

An earlier prototype of Quantum air hockey used Microsoft Sur-
face to track mallets. Although MS Surface reliably identifies and 
precisely tracks players’ mallets, it does not allow for ad–hoc 
playing and variable–size playfield setups unlike Kinect. 

8.1.2 Color Tracking for Large–volume Games 
To allow Quantum games to be played in a substantially larger 
volume, such as required for playing Quantum team handball as 
shown in Figure 3, our system tracks players’ colored hats from 
an overhead perspective. Quantum team handball is implemented 
in 2D and assumes that the ball is always floating at chest height. 
For inferring player input, our system detects the colored hats in 
the camera image and tracks players’ motions using Camshift [1] 
To detect when players throw a ball, we equip players’ hands with 
accelerometers, which we found to work better than trying to 
extract hands from camera images. 

For future work on tracking games that have a third dimension, 
such as Quantum basketball, we plan on doing full motion captur-
ing using multiple Kinect cameras. 

8.2 Algorithm of the Quantum Engine 
The Quantum engine represents the ball (or puck etc.) as a proba-
bility distribution over space. Our current implementation uses a 
discreet representation, i.e., a set of ball particles. For Quantum 
air hockey, 100 particles work well; our engine handles up to 
1000 particles in real time, allowing us to detect events of 0.1% 
probability with a 1-1/e = 63% certainty. 

The following rules determine all particle behavior. 

8.2.1 Initialization 
At the beginning of the game a single particle is put into the game 
in a physically landmarked respawn location. 

8.2.2 Creation 
If a particle has a probability p above a threshold, it splits into two 
new particles, each with half that probability. Repeated applica-
tion of the rule causes the initial particle to spawn the desired 
number of particles, e.g. 1000. 

8.2.3 Brownian Motion 
Particles move by a small amount in a random direction with 
every time step (Figure 7a–b). This simulates how player’s 
knowledge of the ball location tends to blur over time. If, for 
example, players return from a break they may not remember 
where the ball was; Brownian motion implements this by making 
the ball be “everywhere” (Figure 7c). 

 

Figure 7: (a-c) Brownian motion moves particles randomly. 

8.2.4 Collision 
For every frame, the Quantum engine tests whether the ball has 
collided with a physical object, such as a wall, goal, player/mallet. 
It does so by testing each particle for collisions against these 
physical objects (but not against each other, because the ‘exist-
ence’ of two particles is mutually exclusive), as illustrated by 
Figure 8a. 

 

Figure 8: Collision detection: (a) An air hockey mallet collides 
with particles. (b) When the engine decides a shot took place, 
all particles that recently collided with the mallet (from the 
purgatory) are kept alive. (c) The left over particles spawn a 

broad field of shots. 

Each particle itself behaves in a Newtonian way. We can therefore 
compute their collisions using a regular physics engine. We ini-
tially tried PhysX, Havoc, and Box2D, but ended up writing a 
custom one for speed. 

Whenever a particle collision is detected, the engine needs to 
decide whether this means that the actual ball has collided. To do 
so, the engine tests the collided particle’s probability against 
random. If 200 of 1000 particles collide, for example, the actual 
ball has collided with p = 200/1000 = 20%. If so, the user is in-
formed using auditory feedback. 

8.2.5 Deletion 
One way of interpreting what happened is that one particular 
particle caused the collision of the ball. This would mean that the 
particle would take on a probability of 1, all other particles take 
on a probability of 0 and thus can be removed: the position of the 
ball would now be fully determined; uncertainty has collapsed to a 
single point and the collision would result in a single beam of 
particles. 

8.2.6 Maintaining Variation 
This interpretation, however, is bad for gameflow. The reason is 
that it reduces the probability distribution more than necessary. 
The size of probability distribution matters, because more varia-
tion provides the Quantum engine with more choice, which in turn 
increases its chance to find an outcome that leads to good 
gameflow. While we have to remove particles that have become 
implausible (i.e. that conflict with the state conveyed to the play-
ers using auditory feedback), any particle we eliminate beyond 
this means a loss for variation. 
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To preserve as many particles as possible, we proceed as follows: 
(1) The engine picks one particle as the primary outcome. This 
particle determines the auditory feedback. (2) The engine pre-
serves all similar particles, i.e., those that would produce similar 
feedback. 

We implement this mechanism as follows: in every time step, 
particles that underwent a collision are moved into a ring buffer 
(‘purgatory’). If a ball collision takes place, the content of the 
purgatory is used to generate the shot. If not, particles drop out of 
the purgatory and are removed. As a side effect, moving a mallet 
clears out all particles in the covered area. This matches our intui-
tion, because players now know that the ball cannot be there. 

Still any collision eliminates particles, causing overall variation to 
drop and which poses a risk to gameflow. Splitting particles with 
high probability will restore the intended particle level, but since 
resulting pairs of particles are identical it does not solve the prob-
lem quite yet. We create fresh variation using two mechanisms: 
(1) Particles floating around on the table in the moment of split-
ting pick up variation through Brownian motion. (2) Particles that 
undergo splitting in the moment of collision are given a slightly 
different direction. This is plausible if we think of mallets as 
having a rough surface [2]. We use a similar mechanism to intro-
duce variation into particles representing a thrown ball. 

8.3 Decision Making—The Game Engine 
The most important part of our algorithm we already mentioned in 
the walkthrough section: Before the engine decides on a shot, the 
engine first computes all alternatives, assesses them, and tweaks 
these probabilities to increase the chance of desirable outcomes. 

This process starts by the Quantum engine computing the future 
trajectories of all particles; in Figure 2, these were illustrated as 
lines. Each trajectory is characterized by where it ends (in the 
opponent’s goal, the player’s own goal, or somewhere on the 
playfield, etc. we call this fate) and how it got there, i.e., directly 
or via (a sequence of) collisions. We now tweak the probability of 
each particle by multiplying with a fate–specific factor, such as 
{(goal, 5), (ownGoal, 0.1), (mallet, 5), (field, 1)}. Based on these 
tweaked probabilities the outcome is decided. 

These last steps (tweaking of probabilities, decision making, 
auditory feedback) take place in a separate part of the system, the 
game engine (see Figure 5). The game engine also applies two 
additional factors to particle probabilities: 1. Handicaps: a player–
specific factor that boosts inexperienced players to make games 
between players of different experience more balanced. 2. Game 
modifiers, power–ups and penalties: during the duration of the 
power–up a player’s abilities are increased or decreased. 

Power–ups can change the probabilities of particles of a certain 
fate: Penalty: the probabilities of particles hitting a player’s mallet 
are reduced. If set to zero, the mallet is essentially disabled, as it 
cannot interact with the ball anymore. Attract: the same process, 
but probabilities are increased, which helps receiving passes and 
intercepting the ball. Goal seeker: increased the probabilities of 
particles hitting the opposing goal, etc. 

We can also introduce conditional penalties: stun, for example, 
imposes a penalty on a mallet, unless it stays put. We can create a 
wide variety of power–ups this way, such as slow motion (player 

cannot move faster than threshold) or black ice (player needs to 
continue current motion and speed) and so on. 

9. Conclusions 
In this paper, we presented Quantum games, physical ball games 
without the ball. Our main contribution is the game concept itself, 
i.e., the idea to write a game around an “imaginary” ball and how 
to implement the concept using a probabilistic physics engine. 
The presented work is work in progress and we are still imple-
menting some of the functionality, tweaking algorithms and im-
plementing additional sports. In the future, we plan to apply the 
Quantum engine to non–game related interactions. 
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