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Emoji, a set of pictographic Unicode characters, have seen strong uptake over the last couple of years. All
common mobile platforms and many desktop systems now support emoji entry and users have embraced
their use. Yet, we currently know very little about what makes for good emoji entry. While soft keyboards for
text entry are well optimized, based on language and touch models, no such information exists to guide the
design of emoji keyboards. In this article, we investigate of the problem of emoji entry, starting with a study
of the current state of the emoji keyboard implementation in Android. To enable moving forward to novel
emoji keyboard designs, we then explore a model for emoji similarity that is able to inform such designs.
This semantic model is based on data from 21 million collected tweets containing emoji. We compare this
model against a solely description-based model of emoji in a crowdsourced study. Our model shows good
performance in capturing detailed relationships between emoji.
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1. INTRODUCTION

For more and more users, the mobile phone is their primary, or even only, computing device.
On Facebook, e.g., mobile-only users make up a growing percentage of users, currently
already accounting for more than 50 % of their monthly active users®. Facebook is but one
of many messaging and social networking applications, that, overall, dominate the rankings
for most used applications on mobile devices [Church et al. 2015]. As such, a critical aspect
of mobile systems is how they can support the expression and creativity of their users,
enabling them to connect with those dear to them.

Text input is a dominant aspect of this expression and has hence been a research focus
for many years. For example, researchers have designed a large number of input methods
to optimize text entry speeds (for a comparison see, e.g., [Kristensson and Vertanen 2014]).
But text input is not necessarily restricted to actual text. Instead of using characters to
compose words, they can also be repurposed in emoticons, such as :), or <3. Here, characters
are put together in a way that disposes of their actual meaning and makes use of their look
to assemble larger shapes. Hence, the colon turns into a set of eyes and the parenthesis
becomes a mouth.
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Fig. 1. Emoji were first specified in version 6.0 of the Unicode standard (with some characters retroactively
promoted to emoji). Since then their number has continuously grown. The total given here is a conservative
number as it does not include every possible combination of compound emoji). For a list of included emoji
per version see http://emojipedia.org/unicode-[VERSION].

In the Western world, emoticons traditionally mostly use a small number of punctua-
tion characters. But non-Western writing systems offer many characters that enable more
complex and expressive emoticons, such as “\_(*Y)_/~ (shrugging emoticon). While this
potentially allows users to assemble intricate messages, this is not straightforward on cur-
rent mobile phone keyboards which do not generally provide access to arbitrary Unicode
characters. Emoticons have filled a need for a more casual [Pohl and Murray-Smith 2013]
and playful form of communication (e.g., adding a ;) to a text), but can sometimes be hard
to use, especially on mobiles. As recently shown by Janssen et al., emoticon use in chats
does indeed increase perceived intimacy between chat participants [Janssen et al. 2014].
This further underlines how there is inherent value in adding emotional cues to ones textual
communication.

This desire for expression beyond just text is likely what has also been driving adoption
and use of emoji?. Where emoticons assemble “pictures” from characters, with emoji, each
character is itself pictographic. Instead of sending :D, users can then send ©. While still
just text, this character is usually rendered as a colorful visual icon. Emoji not just allow for

expression of many emotional states (e.g., &, %, or is:), but also enable users to decorate
messages (e.g., 7,22, or ), or replace words with visual stand-ins (e.g., N, @, or 5:). Using

a visual icon instead of a word enables users to introduce ambiguity and playfulness where
they see fit. Hence, this means that emoji meaning is fluid and subject to contextual and
cultural (as shown for pictograms by Cho and Ishida [Cho and Ishida 2011]) interpretation.
It is this malleability that makes emoji attractive from an expressive point of view, but also
makes it hard to organize emoji into a set keyboard layout.

Emoji have been growing both in popularity and number over the recent years. As shown
in Figure 1, new emoji continue to be introduced®. Current mobile devices all make a large
number of these characters available for users to enter with dedicated emoji keyboards. Yet,
while the number of emoji has been growing, those keyboards have stuck with one input
mechanism: selecting emoji from large, scrollable lists. However, as we will show in this
article, this approach is slow and prone to user confusion. But while data and methods are
in place to optimize non-emoji keyboards, there is currently nothing available to do the
same for emoji entry. In this article, we investigate emoji similarity modeling as a method
to support the design of future emoji input methods.

2A set of pictographic Unicode characters: http://www.unicode.org/emoji
3For a full list, see http://www.unicode.org/emoji/charts/full-emoji-list.html
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Being able to compute the level of similarity between two emoji allows clustering and
organization of them. In contrast to keyboards for Latin scripts, where it is important to
optimize for sequences of keys, emoji keyboards need to be optimized for search. Being able
to place related emoji close to each other is then a way to aid the user in said search. For
example, when searching for &, it is sensible to expect this emoji to be close to others like
@. On the other hand, if one sees an @, one could expect hamburgers to not be nearby. This
structuring of the emoji presentation is particularly necessary as the large number of emoji
makes it unfeasible to memorize all emoji locations. Instead, a more realistic approach
is guided search, which requires the capability to organize or subset this search space—
something we contribute in this article.

In the remainder of this article, we first take a closer look at the state of the art by
presenting an introduction to emoji, a quantitative exploration of emoji use (based on a
large number of scraped tweets with emoji from Twitter), and an evaluation of the current
Google emoji keyboard. The results from the study of the Google emoji keyboard show that
emoji entry can be slow, but more importantly, that search is a critical problem of emoji
entry. This finding motivates us to focus on the aspect of emoji layout to support users in
this search. To guide emoji arrangement, we then build a model for emoji similarity. Our
model makes use of semantic information, gathered from the tweets we collected earlier.
We compare this model to a purely description-based model in a crowdsourcing study.
Our results show significant correlation between human raters and both models. Instead
of manually designing emoji input methods, future designs can thus also be informed by
such models. By making it easier and more convenient to enter emoji, input methods would
directly support users ability for more personal and playful expression.

2. AN INTRO TO EMOJI

Though in some instances they supplant words entirely, they also open up new
vistas of exchange and creativity. They are in a sense, the words that got away,
and then returned. As smiles and frowns and jetliners. [Lebduska 2015]

In the late 90s, the first emoji were created in Japan for NT'T DoCoMo. Emoji allowed
sending small pictograms to other phones by only transmitting two bytes—the correspond-
ing character code. The Japanese origin of emoji still manifests itself in emoji such as
(Japanese post office), k4| (outline of Japan), & (Koinobori wind socks—flown during Chil-
dren’s Day celebrations in Japan), or # (Kadomatsu decoration used for Japanese New
Year). Other Japanese carriers followed suit and several partially overlapping sets of char-
acters were in use for a while. However, this situation posed problems when designing for
interoperability beyond Japan, e.g., with email systems. To resolve this situation, the Uni-
code consortium in 2010 standardized 722 emoji in version 6.0 of the Unicode standard,
while also promoting many earlier characters® to the status of emoji as well. In addition to
symbols from the Japanese carriers, this included characters from Zapf Dingbats (e.g., ®, or
&), Microsoft’s Wingdings font (e.g., 4, or ‘), and Japanese TV symbols (Association of
Radio Industries and Businesses [ARIB] set, e.g., ‘&, or ...). In fact, many symbols were part
of multiple original sources and were merged to one Unicode code point. With Unicode stan-
dardization, interoperability between systems was secured—a necessary prerequisite for the
rise of emoji to broad popularity. Unicode allows proposals for additional emoji and hence
the set has grown over the years. For example, Unicode version 9.0 is bringing emoji such
as J (Selfie), & (Duck), and == (Canoe).

4For an overview of emoji sources see http://www.unicode.org/emoji/charts/emoji-versions-sources.html
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Table I. While most emoji look similar on all major platforms, they each have their own unique style. Some
emoji, as shown here, differ considerably between platforms which could lead to unintended interpretations in
cross-platform messaging. For example, some vendors chose to represent the nail polish emoji not as the object,
but instead as the action of applying it. This could introduce misunderstandings in messages such as “Went to
get some i%,.” More severe inconsistencies are, e.g., exhibited by some vendors representing alien monsters with
the classic video game sprite §?, or showing two females dancing ¥ where the standard calls for one “woman
with bunny ears.” But vendors also use the chance to leave their personal mark. The mobile phone emoji, for
example, shows phone designs by the respective companies. Note that we show two versions of the Microsoft
emoji to highlight changes even within one vendor’'s designs.
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2.1. Uptake in Emoji Usage

Data on emoji uptake is available from Instagram and Twitter. Instagram saw a sharp rise
in emoji usage from 0% of texts using emoji to 20 % of them within less than half a year of
the introduction of the iOS emoji keyboard®. Currently, about 40 % of Instagram messages
contain emoji, and this number is even higher in some markets (e.g., more than 60 % in
Finland). Twitter has reported data on the usage of emoji in TV-related tweets between
April 2014 (when emoji were introduced on Twitter) and July 20155. In that timeframe,
the share of TV-related tweets containing emoji grew from 9.8 % to 14 %. This percentage
highly varies by genre and, e.g., up to 22 % of tweets on music programming contain emoji.
Twitter also found that younger and female users are more likely to include emoji in their
tweets—hinting at why tweets on sport talk shows are least likely to include emoji (only 4 %
do). Of course, uptake of emoji in social media and messaging is not representative of overall
frequency of emoji in other forms of writing. Likely, much fewer emoji make their way into
essays, annual reports, or news articles. Yet, personal communication is an important area
and, as shown above, supporting emoji use here is an aspect of growing importance.

Growth of emoji popularity also shows in how much attention they receive. For example,
Ozxford Dictionaries prominently made an emoji, “&”, their Ozxford Dictionaries Word of
the Year 20157. While emoji allow users more visual expression in their messaging, that
same quality is also attracting advertisers. One mobile marketing company, e.g., saw an
777 % increase of emoji usage in campaigns running on their platforms?.

Shttp://instagram-engineering.tumblr.com/post/117889701472 /emojineering-part-1-machine-learning-for-
emoji

6https://blog.twitter.com/2015/emoji-usage-in-tv-conversation
"http://blog.oxforddictionaries.com/2015/11 /word-of-the-year-2015-emoji/
8http://venturebeat.com/2016,/03/24/marketers-might-over-doing-it-with-all-of-the-emojis/
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Fig. 2. Since Unicode Version 8.0, the standard specifies that emoji showing people should have a generic
color (such as yellow, blue, or gray). Those emoji can then be combined with one of five skin tone modifiers
to produce a more diverse set of emoji.
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Fig. 3. To accommodate the large number of skin tone variant emoji, emoji keyboards have changed to
pop up selection menus for corresponding emoji when touched for a short while. Users can then pick a skin
color from the overlayed menu.

2.2. The Nature of Emoji

What makes emoji special as a means of adding visuals to texts is that they are text. Instead
of sending images of smileys or airplanes, characters representing them are transmitted (they
form a logographic writing system). Hence, in contrast to images, they can be used in places
such as URLs, email subjects, or usernames. The Unicode standardization only defines a
mapping between a character code and an abstract emoji description. It is up to individual
platforms to provide fonts that render the individual emoji as a graphical representation
(note that some emoji, such as !l can also optionally be rendered as text: !!). Hence, emoji
can look different on different systems and even between versions of the same system. This
can be problematic where graphical representations strongly differ, a problem just recently
investigated by Miller et al. [Miller et al. 2016]. Table I shows several such examples where
emoji vary so much in appearance that there could be misunderstandings between users of
different platforms.

But the fact that they are text also allowed them to spread at the speed that they did.
After all: emoji are not the first instance of visually augmented texts. Instant messengers
like Yahoo! Messenger have for a long time supported inline smileys. Similarly, common
forum software, like phpBB, have their own smileys. With no standard encoding for those
smileys though, there was no interoperability. Forwarding a forum post via instant message
would mean losing the embedded smileys. Emoji, however, now allow copying text with
smileys freely between systems. This does not necessarily mean the emoji will show up on
each system, though (users browsing the web on an older phone without emoji support
would, e.g., just see empty boxes).

The textual nature of emoji, in a sense, allows them to “sneak into” applications. If an
application renders text through an API like Microsoft’s Direct Write?, emoji characters
are automatically rendered correctly (if supported on the specific platform). Thus, while
supporting custom smileys adds additional work, applications that can handle text essen-
tially get emoji capabilities for free. In this case, no app-specific input method needs to be
designed, but emoji entry is done via the system’s keyboard.

9https://msdn.microsoft.com/en-us/library /windows,/desktop/hh802480(v=vs.85).aspx
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2.3. A Combinatorial Explosion of Emoji

While many emoji are defined as a 1 : 1 character code to pictogram relations, others
break this pattern. For example, the Unicode standard specifies flags emoji, which are not
each encoded as distinct characters. Instead, regional indicator letters are combined to spell
out country codes which are then supposed to be rendered as flags: [@ + B = . This
approach makes the standard more flexible, as no list of flags needs to be updated with
changing geopolitics. Which codes define a flag emoji is delegated to ISO 3166, specifically
the 2-letter codes defined in ISO 3166-1 alpha-2. There are currently 249 officially assigned
country codes, yet support varies a lot between devices. While @8, = I 10 55 0D, o o mm
and Z are commonly supported, some systems show no flags at all (e.g., Windows Phones),
while others support many more (e.g., current versions of iOS). This includes non-country
flags (such as @) and proposed extensions for regional flags'® (such as a flag for Wales:
@& ). The large number of possible flags is bound to result in long blocks of visually similar
emoji on keyboards—an aspect that is already an issue on some platforms.

In an approach similar to regional indicator letters, Unicode version 8.0 brought the
introduction of skin tone modifiers. While the emoji standard did initially not specify skin
color, most platforms rendered people emoji (such as ) with white skin color. Skin tone
modifiers now allow (depending on platform availability) changing the appearance of emoji
to one of five levels (Type I and Type II are combined in one level) on the Fitzpatrick
scale [Fitzpatrick 1988] (see Figure 2). Along with this change, all major platforms have
moved to neutral color (e.g., yellow) people emoji when no modifier is used (such as (2)).
This inclusion of skin tone brought a large increase in available emoji. However, instead of
including those emoji directly in the overall emoji list (as with flags), all current platforms
chose to make skin tone selection a separate interaction (hold down on emoji and select
variant from popup, see Figure 3). While this somewhat limits growth of the emoji list, it
also makes skin tone variants less discoverable and take more time to access.

The standard also allows assembling couple and family emoji to, e.g., allow sending an
emoji of a gay couple with two daughters (see Figure 4). This can be combined with skin tone
modifiers to represent interracial families (the Windows 10 Anniversary Update supports
more than 52000 such combinations!!). While Unicode thus allows to specify arbitrarily
complex family groupings, there is no guarantee these characters would be rendered as one
emoji. Those changes to the standard brought some diversity to emoji, but also further
increased the number of emoji. The general approach—to define emoji as a combination of
several other characters—however, is recurring in the standard (e.g., B is a combination of
the code points for § and that of a box). While this allows for many combinations, it also
means the number of emoji to choose from is potentially very large.

2.4. Common Usage of Emoji

As we have seen, emoji use in textual communication is growing. Yet, at the same time,
the number of emoji itself is expanding rapidly through inclusion of additional symbols, but
also through the introduction of emoji modifiers. What is available to users thus is currently
a moving target. It remains to be seen how adoption and user behavior change once the
larger set of emoji sees wider availability. However, we can make some observations on how
emoji are currently used, based on the many messages we inspected during work on this
article (for a quantitative view, see Section 3). We observed five different patterns of use:

Decorative use. Here emoji are used as a sort of flourish, or decoration, for accompa-
nying text, yet are not an integral part of it. For example, emoji can be used when
congratulating: “Happy birthday! @T ”.

1Ohttp:/ /www.unicode.org/review/pri299/pri299-additional-flags-background.html
http://blog.emojipedia.org/diverse-emoji-families-come-to-windows/
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emoji for all gender pairings. Here a i%| (U+FEOF: variation selector-16) character is used to force emoji

style for the heart character (hearts can also be rendered as monochrome text). All this can potentially be
combined with skin tone modifiers. This mechanism has also been exploited to create non-standard emoji.
The last row, e.g., shows an emoji Apple included for the “I Am A Witness” anti-bullying campaign (see
http://www.wired.com/2015/10/i-am-a-witness-emoji-ios-9/).

”

Stand-in use. Here an emoji replaces an actual word, such as in: “Out for a -« ".
Emotional use. Instead of just decorating a message, emoji can be used to change the
tone or meaning of a message. One example is sarcasm, such as in: “Sure, go ahead =< ”.
Another example is communicating feelings about something, such as in: “Got my test
results € 7, which would be a very different message when ending with a 2.

Reaction use. Here the emoji stands on its own and communicates a direct reaction to a
previous statement, such as: “=” (“alright”). This is mostly used in chat conversations.
Stand-alone use. This is a generalization of reaction use for messages that contain only
emoji. This presumes either familiarity of the recipient with this kind of use (similar to
use of texting abbreviations) and/or context. In mid-December, a user might, e.g., send:
“EADT 7 (~“I'm stressed out by Christmas shopping”).

3. QUANTIFYING EMOJI USAGE

So far, we have given a general overview on emoji and their use. However, ultimately we
would like to have data to reason about and work with emoji. We thus set out to collect a
large amount of real world data on emoji and how they are used. An ideal candidate would be
instant messaging logs, but those pose privacy problems and are also not generally available.
Instead, we turn to publicly available data and collected a large number of tweets containing
emoji. Using data from Twitter has several advantages over other data sources: (1) it is
available via an easy-to-access API, (2) in contrast to forums, which usually concentrate on
one topic, tweets cover a much wider range of topics and use, from casual communication
between friends, to curated marketing by social media experts, and (3) there is a large
amount of data, with roughly several thousand tweets send out per second.

There is also previous work on emoji in Twitter data that validates this approach. For
example, Suttles and Ide analyse tweet sentiment analysis and explicitly include emoji [Sut-
tles and Ide 2013]. Vidal et al. concentrated specifically on food-related emotion expression,
as they analyze emoticons and emoji in a dataset of 12,600 tweets containing the words
breakfast, lunch, dinner, or snack [Vidal et al. 2015]. Instead of assessing the sentiment of a
complete message, Novak et al. try to quantify the sentiment of individual emoji and other
symbols [Novak et al. 2015]. They used human sentiment ratings of about 70000 tweets to
rank 751 emoji and other symbols from most negative to most positive sentiment. They
also find that more frequently used emoji have significantly more positive sentiment than
less frequently used ones. While those papers use tweets to infer sentiment, we instead use
tweets to first investigate use of and then establish similarity between emoji.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.


http://www.wired.com/2015/10/i-am-a-witness-emoji-ios-9/

6:8 Pohl et al.

107 4, ,
10° - 17.31% of tweets

10° -
104
10°% -

|
: -.Il.ll . | 1 =

80 100

Collected tweets

Emoji per tweet

Fig. 5. In our collected tweets (excluding spam) about 83 % (~17 million) only contain one emoji (we do
not collect tweets without emoji). At the other extreme, we scraped one tweet containing 105 emoji.

As the amount of emoji in use is constantly changing (device updates bring new emoji),
we decided to limit our data collection to a well defined set of emoji. We hence only collected
tweets containing one of the 845 “level 1” emoji, i.e., those that are “commonly supported
as emoji by vendors at present”? (note that this definition has just recently been removed
from the report). This is a subset of the emoji specified by the Unicode 7.0 standard. While
we limit ourselves to this well-defined subset, there are no technical roadblocks to extending
this methodology to more emoji. However, including very new emoji could introduce a bias
as only very few devices support them and their use would thus mostly be restricted to
early adopters.

In total, we collected almost 21 million tweets over a period of about 29 days in July/
August 2015 via the Twitter public streaming API'3. To limit the number of tweets, we only
collected tweets for 3 minutes at a time, or until 10000 tweets were gathered—whichever
came first. We use Twitter’s keyword filtering to only gather tweets with emoji. However,
as Twitter only allows specification of up to 400 keywords per request, we split the set of
emoji in three equal-sized blocks, randomized block order within a run, and scraped each of
those blocks in sequence. A new scraping run was started every 15 minutes starting at five
past the hour. Hence, we had a large number of individual scraping sessions (96 per day),
which were limited in duration though. At most, this would allow for 2,880,000 collected
tweets per day, yet we collected just slightly more than 720,000 tweets on average.

For each tweet we only retain some data (primarily id, text, date, and username) and
save it to a database. We only collect tweets in English (as identified by Twitter) and reject
retweets (i.e., all tweets starting with “RT @”). While most tweets we collected appear
genuine we noticed some spam. We define a tweet as spam if the tweet (or slight variations
of it) reappear a large number of times. Such tweets often contain a running number but
otherwise repeat the same text as earlier tweets. We set a conservative threshold of labeling
tweets as spam if we can find more than 200 matching other tweets (we do not remove very
short tweets such as “Goodnight % 7). For example, we collected 1336 tweets like:

[#] Qjustinbieber HEY JUSTIN! ", PLEASE DO NOT
IGNORE THIS! It is very important that you read. [URL]

While the share of such tweets of the overall dataset is less than 2%, we do remove them
from further analysis. For many emoji this does not make a difference, but for a small subset
of emoji (e.g., the hand emoji used in the tweet above), those tweets do skew the data as
there is not a large number of tweets containing those emoji to begin with.

2http:/ /www.unicode.org/reports/tr51/#def_levell _emoji
LBhttps://dev.twitter.com/streaming/public
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Fig. 6. Emoji frequency in our collected tweets (excluding spam) follows a power-law distribution. While
we saw over 2.6 million instances of &, we only collected 27 instances for each of [l and w&.

After initial tweet collection, we had 243 emoji occur less than 1000 times. As we in-
tend to reason about the context of emoji, having only few samples per emoji would limit
this capability. To gather more data for those emoji, we collected an additional 106,618
supplemental tweets (including 3083 we later removed as spam) between early August and
mid September 2015. We dropped emoji from this scraping once we had collected more
than 1000 samples for them. While this ran for almost 6 weeks, we were not able to gather
1000 samples for the 76 least frequently used emoji. However, our least represented emoji,
[3, now has 211 samples (compared to 27 samples before supplemental scraping). After
supplemental scraping and spam removal, our final dataset contains 20.6 million tweets.

We used the opportunity to investigate the gender distribution of users tweeting with
emoji. For this, we randomly sampled 1000 users and extract the name they use on Twitter
(not their Twitter handle, which is a unique user identifier). Note that this assumes people
use their real name (or at least first name) on Twitter, as people are free to enter anything
they wish in that field. We parsed this data to extract first names and fed those names to
the genderize.io'* service, which, based on a database of more than 200,000 distinct names,
tries to assign gender. In our sample, 27 % of the names were labeled as male and 34 % as
female. However, 39 % of names (such as, labrena, Utter Amateur, and Minnion) could not
be assigned a gender. While this hints at a larger share of females using emoji (as indicated
in previous research), more research is necessary to confirm.

We also took a closer look at usage patterns (Section 2.4) in the collected tweets. For this
purpose, we randomly sampled 200 tweets and hand-annotated them as using emoji either
decoratively, as stand-in, for emotional expression, or stand-alone. We found some overlap
between categories (some tweets, e.g., make use of both decorative and emotional emoji
at the same time). However, with 66 % of tweets, most emoji were used to add emotional
expression. While 34 % of tweets made use of emoji as decoration, only 8 % of tweets used
emoji to replace a word. Surprisingly, we found no tweets containing only emoji and no
text in our dataset. However, we discovered this is due to the streaming API filtering out
such tweets. For example, we would receive the tweet “Cute % ” but not the tweets “ ” or
“% W 7. Unfortunately, this behavior is undocumented and we can only speculate why we
observe this. However, for our further use of the Twitter data this is not a large problem.
As we are specifically interested in context around emoji, single emoji tweets do not add to
the model. We do miss out on tweets with multiple emoji (yet no Latin characters) though,
which would help with training. Yet, we believe our dataset is sufficiently large to allow us
to fill those gaps with emoji sequences from tweets with Latin characters included.

Mhttps://genderize.io/
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From our initial, unbiased, tweet sample (excluding supplemental tweets), we can estimate
how many and which emoji are used. We observed that 83 % of tweets only contain one emoji
(see Figure 5). Hence it is necessary to draw on the surrounding word context in establishing
emoji similarity across tweets. Considering only tweets in which multiple emoji occur side-
by-side would severely limit the usable data. While there are some outliers with larger
numbers of emoji, these are negligible overall. We also see a small set of emoji dominating
in actual use (see Figure 6). The top ten emoji together appear about 9 million times, while
the bottom ten only have 379 occurrences overall. This is a strong indicator that not all
emoji are created equal, but might also be due to current keyboards making it too hard to
discover less frequently used emoji. Emoji keyboards could take this skewed distribution of
emoji into account and place emphasis on supporting common emoji especially well. Yet
this should not be read as a reason to omit some emoji from the keyboard. The set of used
emoji likely varies by person, situation, topic, or chat partner. Exclusion from a keyboard
should thus not just be based on frequency of use. The relative frequency of the ‘z’ character
in English texts, e.g., is only 0.096 %'°, yet all English keyboards include it.

Comparative data on emoji frequency and use is, e.g., available from SwiftKey—a third
party keyboard for iOS and Android. In their SwiftKey Emoji Report'®, they describe find-
ings based on typing data gathered between October 2014 and January 2015. For example,
they note that 44.8 % of emoji use is only happy faces, something we also see in our data.
They also find a large amount of differences according to users’ location. Russian users,
e.g., are twice as likely to use the emoji compared to the average user. On the other
hand, Australian users are 66 % more likely to use . The live updating emojitracker'” also
monitors emoji usage on Twitter. We compared their emoji ranking to ours and found a
strong correlation; Spearman’s rank correlation coefficient r; = 0.95,p < 0.0001.

4. EVALUATING THE STATE OF THE ART OF EMOJI ENTRY

As we have shown, use of emoji has grown rapidly over the last couple of years. However,
design of emoji keyboards has so far mostly stuck with long lists of emoji. The sheer number
of emoji has made it impossible to show them all at once at a selectable size—a problem
shared with other scripts containing many characters. While we will later look at other
approaches to the problem of entering characters from such large volume scripts, here we
first take a look at the common approach. With lists of emoji being used everywhere, an
analysis of such keyboards aids in identifying problems and setting a baseline for any future
improvements to emoji entry.

In this section, we will investigate how the default Google keyboard on a Nexus 5, running
Android 5.1.1, fares when entering emoji. We chose to investigate emoji entry on Android
as it is the most widely used mobile operating system. While there are many different
manufacturers of Android devices, the Nexus 5 is a generic middle ground without OEM
customizations. It is also one of the most common devices!®.

The version of the Google keyboard we tested offers 822 emoji (shown in Figure 7), split
into 5 categories. All emoji are arranged in grids and span multiple pages, which users can
swipe through horizontally. Each page is associated with a category and selecting a category
jumps to a page belonging to it. However, users can also transition between categories by
continuing swiping on the last page of a category. This is different than many other emoji
keyboards where emoji in each category are shown in a list of their own and no continuous
swipe-through is possible. Thus, the Google keyboard actually has an advantage when used
for exploration where users want to quickly scroll trough all emoji.

15Computed from the Brown corpus [Kuéera and Francis 1967]

16https://blog.swiftkey.com /americans-love-skulls-brazilians-love-cats-swiftkey-emoji-meanings-report,/
Thttp: / /www.emojitracker.com/

18 According to OpenSignal’s August 2015 Android Fragmentation Report: http://opensignal.com/re-
ports/2015/08 /android-fragmentation/
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Fig. 7. An overview of all emoji available in the Google keyboard on the Nexus 5 and thus included in our
evaluation. The emoji are shown in the same category and order as they appear on the keyboard.

The Google keyboard employs two mechanism to facilitate entry of common emoji: (1)
it maintains a list of recently used emoji, and (2) also remembers the last used page per
category. If users only enter emoji from a small number of pages, this approach often presents
them with the target page when opening the keyboard or switching categories. However, this
mechanism can be disorienting sometimes when users jump to the middle of a category on
category selection, but are unclear whether the emoji they are looking for is in a previous or
following page. The worst case occurs, when the emoji is on the first page of the category, yet
after jumping to the middle users search for it in the other direction. Now users traverse half
the pages to reach the wrong end and then need to backtrack all the pages of the category
to find the actual emoji. In this situation, always jumping to the start of a category (as in
most other keyboards) would have probably fared better. This issue likely resolves though,
once users have a better mental model of emoji ordering.
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Each page of the Google emoji keyboard shows 7 columns by 3 rows of emoji. This is a
common arrangement, e.g., also found in the Samsung keyboard on a Galaxy S4 and the
WhatsApp keyboard on a Lumia 920. Many newer devices even show 4 rows of emoji or
more. The number of usual emoji per screen thus is roughly between 18 and 50 (21 in the
case of the Google keyboard).

4.1. Challenges When Testing Emoji Keyboards

Evaluating emoji keyboards comes with several challenges. With the set of possible entries
commonly as big as 845 emoji (level 1 emoji), or even bigger (e.g., all Unicode 9.0 emoji),
exhaustively testing the entry of every emoji in a lab-setting is prohibitively costly. However,
only testing some, e.g., the most common ones, can bias the results. Drawing a limited
random test set of emoji is one way to approach this. But even then, the question of how
much coverage of the full set is needed for representative results remains open.

The bigger challenge, however, is picking an appropriate testing procedure. If one were
interested in natural user behavior, a chat study where two participants exchange messages
(such as in [Hancock et al. 2007]) would be an appropriate choice. This could also be
designed as a longitudinal study that monitors users’ chatting behavior (such as in [Tossell
et al. 2012]). However, this approach risks that only a small number of emoji are actually
typed and does not generate a lot of data as much of the time is spend not entering emoji.
A longitudinal study also raises privacy concerns, as recording typed emoji can capture user
mood. Larger amounts of data can be generated by deploying prototypes to an app store
(such as in [Bohmer et al. 2014]). However, this still would not give control over the share
of emoji in the data. One way around this is to find a game format that allows control of
the task, while still engaging users, such as in [Henze et al. 2012]. Most commonly, though,
text entry methods are tested with a task where participants have to copy text verbatim.
That is also the approach we chose for our investigation, as this allows for control of which
emoji are to be typed.

We adopt an approach where we test with an emoji test set sampled from Twitter. To
generate a test set, we scrape 10,000 tweets containing emoji present on the Google keyboard
(822 different emoji). From the scraped tweets we only keep the emoji and store how often
they occurred. This set includes 502 different emoji (as some emoji never occured in the
tweets scraped for testing). During testing, we sample emoji with replacement from this
dataset. The dataset is hence heavily skewed towards the most common emoji. Thus, in
order to broaden the range of emoji occurring during the evaluation, we log transform the
emoji frequencies to boost the likelihood of rarer emoji appearing. When computing final
keyboard performance we reverse that transformation. Thus, while we favor rarer emoji
during selection, we make sure they only influence scores per their original likelihood.

4.2. Participants

For the study, we recruited 12 participants (3 female, age 21-41, z = 27.4, SD = 6.3) from
around our institution. The study took ~30 minutes and after completion, participants
received a small non-monetary gratuity. All participants owned a smartphone, however
none of the participants owned a Nexus 5 as used in the study. Only two participants stated
they had the same emoji design on their phone. Most participants had phones by vendors
with custom Uls (e.g., the Samsung keyboard), or with older Android versions (which used
a different design). However, while they were not intimately familiar with the Google one,
default keyboards do not differ much currently. We asked participants to indicate whether
they often use emoji on their phones on a 5-point Likert scale. While one participant strongly
disagreed, four agreed, three strongly agreed, and four did not lean either way.
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4.3. Procedure

Before participants started the session, they were given time to try out the Google keyboard.
In this phase, participants were shown emoji to enter that are not part of the evaluation set.
While this prevents participants already searching for emoji which are later to be tested,
they nonetheless gain an initial overview of the keyboard as they look for the evaluation
set emoji. We chose the training emoji such that they reset the Google keyboard’s category
state. As mentioned earlier, the keyboard remembers the last entered emoji for each category
and jumps back to that position when reopened. By always having an emoji from the first
page of each category last in the training phase, all category jump targets are reset to the
respective first page of the category. While this ensures a consistent starting state for all
participants, note that once they entered emoji in the testing phase, the category jump
targets differ between them.

After entering 10 emoji we considered a participant to be sufficiently familiar with the
interface and move on to the main study. The interface used here (see Figure 8) is the same
as in the training phase, but shows emoji from the test set. If participants took more than
one minute to find an emoji in this phase, we aborted the trial as pilots showed that very
long search times frustrated participants.

During emoji entry, we draw emoji to enter by sampling with replacement from the log-
transformed emoji set. Overall, 100 emoji are drawn from this set, resulting in 100 trials per
participant. We only did 100 trials, as this allowed testing in a reasonable amount of time,
after piloting indicated long trial times. In each trial, we start taking the time once the
emoji keyboard is activated via the emoji button in the lower right of the Google keyboard.
During the trial, we record any page transition, activated either by swiping left or right or
by selecting one of the categories and jumping to a page. A trial is complete once the user
commits the emoji with the button next to the text field. Upon completion of a trial the
keyboard resets to the QWERTY view.

4.4. Results

As described earlier, we favor rare emoji in the evaluation to have a broader test set. In
the analysis, we reverse that log-transform and give weights to emoji equivalent to their
observed frequency in the test set. Thus all time results reported here come in a raw and
a corrected version, where the corrected version accurately captures expected performance
for emoji use in the wild.
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Fig. 9. This figure shows (left) how fast users were able to enter emoji, and (right) how many trials were
aborted because they took longer than one minute (error bars show 95 % confidence intervals). As we log-
transform emoji frequency during evaluation, the raw results do not accurately reflect expected performance.
We remove this bias towards rare emoji for the corrected values, which only slightly changes the results.

Figure 9 shows the outcome of the evaluation. The raw selection times over all successful
trials was 8.8s (median) and 12.5s (mean) respectively. Once we correct for the skewed
frequency, this changes to 8.2s (median) and 11.4 s (mean). This equals about 5-7 characters
(while emoji can replace a word, from an entry perspective each emoji corresponds to
one selection) per minute. Note that these times only take into account successful trials,
the average would be higher, had we not stopped trials after one minute. In our fastest
trial, the participant selected 4 in 864 ms. This was possible because no page change was
necessary for the selection (the emoji was already on the initial page). In fact, 64 % of the
100 fastest trials did not require a page change at all. Correspondingly, there is a strong
linear relationship between the number of page transitions and the resulting selection time
of a trial; p < 0.0001. About 3.2% of trials took longer than that one minute and were
aborted (one participant entered all emoji within a minute, while all other participants
exhibited failure rates between 1% and 6 %). If we take into account the emoji frequency,
the expected average failure rate corrects only slightly to 3.3 %. This shows that for most
trials, selection time is within a reasonable range.

In some trials selection time is much larger than others. We compare selection times for
emoji with at least five trials (65 different emoji). This shows a large difference between
the fastest and slowest emoji with ¥ entered in an average 4.3s (5 trials), while - (also 5
trials) took an average of 35.5s. In fact, the ten fastest emoji (&, =, &, ¢, &, <, ¥, ¥,
% and \) were entered more than 5 times faster than the ten slowest emoji (8, &, &, |
@, v, 3, % @ and ). The faster emoji where more commonly used (per our sampled
frequencies on Twitter) than the slower ones. But while they are used more than twice
as often, a linear regression on mean selection time and log-transformed emoji frequency
shows no significant relationship, p = 0.3. Hence, we can not identify good criteria to define
a subset of emoji that are faster to enter than others.

Failure rate also varies by emoji. For example, no trial of @, «,, ¢, W E3 or ~ was
successfully completed. As we randomly sample from a large set of emoji, those six emoji
only account for a total of eight trials though. These trials are thus not representative for
general performance. For a closer look, we only consider emoji for which we have collected
data from at least five trials: a smaller set of 70 emoji. From those 70 emoji, 61 were always
entered successfully (385 trials). The remaining 9 emoji (@, &, %, b, (I, & 122 < and

) each only led to one failure (in a total of 58 trials). There is no clear pattern in this set
of emoji to suggest that some specific subset of emoji are more likely to fail than others.

One might assume that frequently used emoji would be easier to enter. However, when
plotting selection time as a function of emoji rank (see Figure 10), no effect of rank is visible.
To confirm, we ran an independent-samples t-test, comparing selection time between the
50 lowest ranked (i.e., the emoji is not frequently used) samples and the 50 highest ranked
samples. There is no significant difference in the selection times for lower ranked (M=12.1s,
SD=11.3s) and higher ranked (M=10.2s, SD=8.1s) emoji; t(98)=0.95, p=0.35.
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Fig. 11. Here we show how participants progressed towards the target emoji. In each trial, users start at
the last active page of the keyboard. From there, they need to navigate to the target page (here shown in
the middle). Ideally, users would jump to the proper category (category jumps are shown in red) and then
swipe through some pages (page transitions shown in black) until finding the target emoji. Here, we see
that there is indeed a fast approach of the target, yet users in many trials get lost. The plot also shows page
transitions from one trial highlighted in green. That participant immediately selected a wrong category,
searched that category for a while, jumped to the right category, missed the target page while searching
within that category, but finally selected the target emoji after about 13s.

Finally, we checked how users progressed towards the target emoji. Figure 11 shows an
overview of all trajectories towards the target emoji’s page. As their first action after opening
the emoji keyboard, most users immediately jump to a different category. This was the case
in 640 of the trials (~57 %) and is visible as the large share of category jumps (shown in
red) at the left of Figure 11. But that initial jump was not always the right one and in 14 %
of successful trials participants jumped to a category more than once (up to six times).
Overall, though, there was fast progression towards the target page. However, there is a
long tail, as some trials took much longer. This is also visible in Figure 12, that highlights
how the majority of trials already reach the target emoji after about ten page transitions.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.



6:16 Pohl et al.

10 20 30 40 50 60 70 80
Navigation actions needed to reach target page

Fig. 12. When we look at how many jumps to different categories and swipes between pages (here aggregated
as navigation actions) it takes users to reach the target emoji, it can be seen that most successful trials end
after about ten actions. However, there is a long tail where users navigate through many more pages before
finally arriving at the desired one.

We can also investigate whether participants missed the target emoji (navigated to the
proper page, but continued their search). This was the case in 230 trials (~19%). Users
would often quickly swipe through the pages and then backtrack to the target emoji. One
example of this is also shown as a highlighted trajectory in Figure 11. As can be seen, the
participant in that trial started far to the right of the target emoji’s page, selected a category
(big jump) and checked several pages of that category. After not finding the emoji there,
she jumps to another category and continues searching there. This user actually overshots
the target page by one page, but immediately goes back and selects the emoji.

We find that in 802 (66.8 %) of the trials, participants made use of the category buttons
to jump to a different page. In the remainder of the trials, they either swiped through many
pages or were already close to the target emoji. However, we also find that participants often
chose the wrong category and had to pick another one. In 191 trials (15.9 %), participants
picked a category at least twice. The number of category jumps quickly declines though
(6.6 % trials contain more than two jumps, 3.3 % more than three, and only 1.2 % more than
four). The most extreme trial we recorded had the participant select a different category
8 times—rechecking already visited ones as well—and visiting 83 pages in the process.

While the above analysis only considered successful trials, we can also take a look at
the 38 failed trials to see how those searches progressed. Most surprisingly, we find that
in 66 % of failed trials, participants actually visited the page containing the target emoji.
The participants hence often missed it and continued their search elsewhere. Participants
also visited many more pages in failed trials than in successful ones. On average, 53 pages
were visited (50 median) in failed trials, while participants in successful trials visited only
10 pages (6 median). However, the worst recorded failed search spanned a total of 98 page
visits, even though the keyboard only has 42 pages.

4.5. Discussion

Overall, emoji entry performance with the Google keyboard is adequate. Selection time can
be slow, but only becomes very large in a limited number of cases. But in some situations,
the Google keyboard exhibits problems. Especially the fact that users miss the emoji 19 %
of the time is concerning. While the Google keyboard shows only 21 emoji per page, the
emoji keyboard on the iPhone 6+ shows up to 50. A higher density of emoji makes it easier
to miss one, or at least increases the time needed to scan a page of emoji. With the number
of emoji growing, this search problem is bound to intensify.
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We can also see that, users often pick the wrong category for an emoji. In almost 16 %
of the trials, they jumped to a different category more than twice. This indicates that
there might be room for improvement in the category assignment, as users’ model of emoji
location does not always match the actual location. Presently, there is little data that can
be used to inform category assignment. Later on in this article, we will look at using large
amounts of tweets to inform which emoji should be close to each other. In actual use most
users would probably not spend the time to find one specific emoji, though. Instead, they
would settle on a different one or eschew emoji use altogether. However, as users should be
able to enter any text, they should also be able to properly enter any emoji.

The fact that users sometimes failed at finding emoji in a reasonable amount of time also
made us wonder about the base cost of using the Google keyboard interface. In our tested
version of the Google keyboard, the 822 emoji are split over 42 pages. As an animation is
shown for each page transition, just visiting a page already takes some time. The overall large
number of pages then makes exploration and search of emoji cumbersome. To quantify this,
we ran a quick informal study with 7 participants (1 female, age 22-34). We had participants
start on the first page of the Google keyboard and asked them just to swipe through all
the pages. This already took them about 21 seconds. If additional visual search effort is
necessary, it is clear that exploring the available emoji can take a long time.

The current Google emoji keyboard does not favor more common emoji over less common
ones. Hence, we could not observe faster selection for more frequently used emoji. Depending
on the specific design goals, this can be perfectly acceptable behavior. If we consider all emoji
as equally important then we would indeed not want to favor any of them. In fact, favoring
the already more popular ones would only reinforce this difference. However, novel emoji
designs could decide to bias selection efficiency slightly towards more common emoji. The
critical aspect in such an endeavor would be how to find the right balance of bias to support.

Compared to traditional text entry, the 57 emoji per minute rate, currently achievable
with the Google keyboard, seems slow. We can also compare this number to performance
data from other large character systems. With pinyin (Chinese) text entry, for example,
characters can be entered much faster with performance varying between 15 and 35 (~25 on
average) characters per minute, depending on the input method used [Liu and Wang 2007].
This is even though there are more Chinese characters than emoji. With pinyin, users still
enter Latin characters, yet those numbers show that other approaches to large character set
text entry fare much better than the list selection one currently used for emoji.

5. INPUT METHODS FOR EMOJI AND OTHER LARGE CHARACTER SETS

Having taken a closer look at the predominant method for emoji entry—selection from
lists—here we take a step back and look at the problem from a broader perspective. Even
just for emoji, while list selection is the predominant form of entry, other input methods do
exist. But entering emoji is not the only text entry area where the set of characters to enter
is large. Especially East Asian languages, such as Chinese, deal with similar problems of
mapping characters to a format that allows for easy entry. With these scripts, there is not
a clear best approach and thus there are, e.g., several different kinds of input methods for
Chinese characters. Note that any character set can be considered large in some contexts.
For example, in early phones methods such as 79 are used to input Latin characters via the
smaller numeric keypad. Similarly, current research on text entry methods for smartwatches
shows again how just Latin script can already be a lot of characters to support.
Compared to text entry for large character sets, text entry methods for sets of up to ~30
characters are well researched. For those small sets, frequently each character is assigned
to a button and the buttons are arranged in a “simple” layout (e.g., QWERTY). However,
this approach does not work for entering emoji—there is no layout that shows all emoji at
the same time at a selectable size. In fact, in addition to distinct layout problems, there are
several general differences between entering text and entering emoji, as shown in Table II.
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Table Il. Differences between tranditional and emoji text entry.

Traditional text entry

e Characters are entered from a small
set of well-known symbols (the ISO basic
Latin alphabet, e.g., has 26 characters).

e The meaning of each character is well
defined and there is no character-level am-
biguity.

e Input needs to be optimized for speed.
Focuses on composition of words.

e Designed for frequent and, sometimes,
prolonged use.

e A means for general purpose expres-
sion. Text is neither inherently playful, nor
somber.

Emoji entry

e Characters are entered from a large
set where users might be unfamiliar with
many of the symbols.

e Multiple interpretations per emoji are
possible and ambiguity can allow for
choice between several emoji (e.g., several
emoji can connotate enjoyment).

e Speed and efficiency are less important.
Instead, exploration of the available sym-
bols needs to be easy.

e Designed for intermittent and sporadic
use.

e Emoji are visual (and often playful and
“cartoony”) in nature, making them im-
mediately noticeable when embedded in

text. In text, emoji can provide a sort of
emotional annotation (e.g., pointing out
intended sarcasm).

In this section, we present an overview of classes of text entry methods currently avail-
able for entering emoji. Furthermore, we take a look at existing input methods for other
kinds of large character sets and how they could influence designs of emoji input methods.
Particularly East Asian scripts have inspired a wide range of input methods, e.g., based on
shape or phonetic of the characters to enter.

5.1. Enumeration

Listing all possible characters and then allowing users to browse that list is the approach
currently used by emoji keyboards. This approach has several advantages: (1) it does not
require any ordering of the characters, (2) it allows users to browse all available characters
and thus aids in discovery, (3) as users can see the available emoji, they do not need
to remember exactly what it looks like, and (4) it is easy to implement and extend for
new characters. However, as stated earlier, this approach also does not scale well to larger
character sets. The absence of an ordering also means that it can be hard to remember the
location of a character.

A slight tweak of just showing all characters in a large list is the EmojiZoom input
method [Pohl et al. 2016]. Here all emoji are shown at once, but only are selectable after
users zoom in. High resolution screens on current mobile devices enable users to still make
out sufficient details, even at the zoomed out level. As the start view is always the same,
this design also allows users to build spatial memory and, e.g., learn that smiley emoji are
always found in the top left corner. The spatial mapping also allows for good exploration of
the available emoji. Users can zoom in slightly, to a level where individual emoji are clearly
legible, and then pan around to explore the space. EmojiZoom organizes emoji according
to the Unicode order in snaking layout. This still leaves cases where emoji location is
ambiguous. The ordering is also only one-dimensional and the mapping to two-dimensional
space thus also limited. For a two-dimensional layout of emoji more detailed relationship
information is necessary. The semantic similarity model we later present in this article would
enable a more spatially optimized version of EmojiZoom.
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5.1.1. Categorization. To alleviate the problems of large lists, emoji keyboards split the
emoji into different categories. In Android 5.0, e.g., those are: faces, objects, nature, places,
and symbols. However, while this limits the number of pages per category, splitting intro-
duces new problems. The assignment to categories is often arbitrary and a compromise.
For example, ¥ is part of the faces category, while % is part of the nature category with
most other animals. Yet, while 4} is also in the nature category, % and % are found in the
places category with other sports and activities. Such ambiguities are common. Should £
be with the other flags or near &? Why is ) not next to %/ and { on the Google keyboard?
Because emoji often allow multiple uses and interpretations, imposing a strict ordering is
bound to produce such cases, where one would expect one emoji to be close to another, but
it is found elsewhere. One could put emoji in multiple categories (not currently done), but
this would also inflate categories and might negatively impact search time.

5.2. Querying and Prediction

Instead of selecting characters from large lists, users can be enabled to query the set of
characters to find the one they are looking for. While this allows for simple interfaces (e.g.,
only a text box) the main problem with this approach is that users have to know the
character they are looking for. Thus, query systems fare poorly when users need to discover
characters or cannot exactly remember the shape of a character. However, such systems
do integrate well with existing Latin script keyboards as they require no mode switch to a
dedicated emoji keyboard.

5.2.1. Handwriting/Drawing. Handwriting recognition [Tappert et al. 1990] is an established
method for entering characters. While it theoretically allows for arbitrarily large character
sets, it is effectively limited by how well users can remember and draw each character. Earlier
research already extended this to pictogram retrieval [Lopresti and Tomkins 1993]. Google
has also been experimenting with using handwriting input for entering emoji'?. While their
emoji mode works well for emoji with an easy to draw silhouette (e.g., B, or ®) or only few
features (e.g., ©, or ), it fails with emoji where no clear handwriting equivalent exists or
where the emoji is too complex (e.g., ¥, &, or @). Outline drawings are also not able to
differentiate between emoji that only differ on how they are filled. For example, the flags
of Germany ™, Estonia =, and Hungary = only differ in the color of their stripes and are
not distinguishable in outline sketches.

5.2.2. Textual Search and Replacement. When users know the name or description of a char-
acter (e.g., & is called oncoming bus), they can search for it with text queries. While we are
not aware of any emoji keyboard implementing this, some do offer a related method. For ex-
ample, on Windows Phone 8.1 users can select words and then pick an emoji for replacement
(e.g., replacing “dragon” with ®). This approach uses a curated subset of emoji annotations
as given in the Unicode CLDR?C. In fact, this approach of linking emoji with their respective
keywords is becoming more common. Apple, e.g., is planning to introduce the capability to
replace words with emoji on tap to iMessage with iOS 10. Some systems such as the Slack?!
messaging platform, the Discourse®? forum software, the Github?3 repository service, and
many others?4, allow emoji entry via text codes. Here, entering :thumbsup: in a text field
would, e.g., result in that text in the output to be mapped to the = emoji.

19https://play.google.com/store/apps/details?id=com.google.android.apps.handwriting.ime
20 Unicode Common Locale Data Repository: http://cldr.unicode.org/

21 https://get.slack.help/hc/en-us/articles/202931348-Emoji-and-emoticons
22http://blog.discourse.org/2015/12/emoji-and-discourse/
23https://github.com/blog/1289-emoji-autocomplete

248ee, e.g., http://www.emoji-cheat-sheet.com/
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5.2.3. Prediction. Instead of making emoji entry a dedicated task, some keyboards try to
roll it into the autocorrection mechanism. An early example of this can be found on Windows
Phone 8.1 where, after entering “birthday”, the keyboard will suggest entering = next. Such
emoji suggestions can also be found in some third party keyboards. The Minuum keyboard
is one example, featuring smart emoji prediction®®. Instead of integrating into a keyboard,
Dango floats on the screen, analyzing what is being typed to suggest emoji, GIFs and
stickers to add to the current message2®. Like our semantic emoji model, Dango uses a
neural network to embed emoji and text in the same space. Instead of emoji, Urabe at el.
analyzed affect in input text and then infer appropriate emoticons [Urabe et al. 2013]. User
thus implicitly control which emoticons are available with the text they enter. Our work
in this article can support existing methods in this category. As we will show later, we are
able to predict semantic similarity between emoji, which could directly support prediction.

One aspect of prediction-based methods that so far has seen little focus, though, is how
they could support exploration. Currently, the existing systems only present users with a
shortlist of matching emoji. However, going beyond this list is not supported yet. If similarity
data for emoji is available, keyboards could be extended to allow users to grow a result set
with other emoji, similar to the ones already shown. Similarly, systems could present an
initial coarse but wider prediction and then only after users pick the rough direction they
want to go in, present a more fine-grained list of predicted emoji.

5.2.4. Query by Picture. While not used as an actual text input method, Image2Emoji
demonstrated how to select a set of emoji based on an input image [Cappallo et al. 2015a]%".
Input images are mapped to textual descriptions via a convolutional neural network, com-
bined with any accompanying text (title, description, tags). Emoji are also mapped to text
by representing each with its name. Which emoji are then similar to an image is determined
by similarity of their textual descriptions in a semantic embedding. Such a method could be
useful for generating a shortlist of emoji for use in captions when sharing images on social
media or when commenting on media. However, for a general text entry method, requiring
users to have an image of what they are trying to express handy is likely too cumbersome.

5.3. Methods for East Asian Languages: Mapping to Latin Script

So far we have taken a look at methods already in use (even though only experimentally)
for emoji entry. For East Asian scripts, there are several more methods in use which work by
defining a mapping from each character to a sequence of Latin characters. Such a mapping
is generally (1) phonetic, or (2) based on the shape of the character. Here we detail those
two approaches and describe how those could relate to emoji entry.

5.3.1. Phonetic Mapping. Some of the most common methods here are based on Pinyin,
the phonetic system for Mandarin. Instead of entering a character directly, users enter a
phonetic representation (which is possible using an extended set of Latin characters). For
example, to enter “{RIF", users can just input “nihao”. However, while such methods work
well for, e.g., East Asian scripts, they are not directly applicable to entry of emoji or symbols
where no clear phonetic representation exists. Instead, one could spell out the name of an
emoji (e.g., “tropical drink” < ). But many of these names are not obvious and there
would need to be a way to indicate whether emoji or text entry is desired. A basic version
of this is found on Windows Phone 8.1, where saying “smiley” inserts a :), while “frowny”
instead puts a : (into the text. However, speech is generally poorly suited to the exploration
required for entry from the larger emoji set. One possible approach here, though, would be
to dictate text first and then only use voice input to insert emoji afterwards. Textual context
could then limit the number of candidate emoji to a manageable set for speech input.

25http://minuum.com/exploring-emoji-the-quest-for-the-perfect-emoticon/
26http://getdango.com/emoji-and-deep-learning.html
27They have also shown the reverse: searching for video based on a set of input emoji [Cappallo et al. 2015b].
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5.3.2. Graphological. In graphological mappings, characters are decomposed into parts
which can then be mapped to Latin characters. In the Cangjie input method, for example,
all Chinese characters are represented by 24 basic character components. For example, the
“JK" (water) radical is used in characters, such as “Z&","5k", or “7K". Each of those compo-
nents is mapped to one Latin character (the water radical, e.g., is represented by the letter
“E”). To enter a Chinese character, users then need to input several radicals in a specific
sequence. Users thus need to be familiar with the decomposition rules that define how to
map characters to sequences of radicals.

This concept could potentially be used for emoji as well, if suitable decompositions are
defined. For example, *, 25, and & all share a common visual component (the basic smiley
face) with varying facial features. We can imagine entering emoji by chaining together
descriptors (e.g., specifying the combination of face and happy already reduces the set of
possible emoji to a manageable number, which could then be displayed for selection). Instead
of showing a list of all emoji, emoji keyboards could then just show a much smaller list of
emoji radicals. However, this requires manual or automated tagging of emoji radicals, where
it is not clear what the set of radicals would be.

6. MOTIVATING EMOJI SIMILARITY MODELING

Keyboards have always brought with them questions of optimization: after all, the whole
point of the invention of the typewriter was to speed up writing. But optimization is par-
ticularly important, as there is a large potential within the nature of the device. As the
letter-to-key assignment is arbitrary, in the sense that any such assignment is possible to
build or implement, there is a large amount of leeway in the design. Common optimization
goals for keyboards are, e.g., to make text entry faster, or to make disambiguation between
neighboring keys easier.

Early keyboard layouts, such as QWERTY, were hand-designed. But the number of pos-
sible layouts is very large and design intuition was eventually replaced by computational
approaches. An early example is Zhai et al’s Metropolis keyboard which tries to optimize
for movement time between keys, weighted according to the respective bigram probabil-
ities [Zhai et al. 2000]. In fact, this formulation, based on Fitt’s Law, is a common op-
timization target as it optimizes for the travel distance of the fingers and yields results
were keys often used after each other are close to each other. Of course, speed is only one
aspect to optimize for and thus there are other keyboards that optimize for multilingual
input [Bi et al. 2012], touch input [Weir et al. 2014], or try to find the best layout for multi-
ple optimization goals at once [Dunlop and Levine 2012]. In addition to different objective
functions, researchers are also applying more complex optimization methods, such as integer
programming [Karrenbauer and Oulasvirta 2014], to search for the best layout.

However, the optimization goals for text entry and emoji entry are completely different.
For text entry a common goal to optimize for is speed of entry, or the related travel dis-
tance between keys. Hence, objective functions for this purpose generally include bigram
probabilities as a weighting term. The underlying assumption here is that many characters
are entered in series. If users only ever entered one key such an optimization would not help
at all. But while longer sequences are common in text entry, they are not a common case
for emoji entry. Instead of entering many emoji after each other, users usually only want to
add one or a small number of emoji to a message.

The most important aspect of emoji entry is thus the search for individual emoji and not
the entry of emoji sequences. As such, we do not need to optimize travel distance between
subsequently used emoji, but instead need to optimize for search time. This aspect of emoji
entry connects more with work in visual search than work in text entry. Where text input
methods have been less concerned with searching for the right key (users are expected to
internalize the layout and only be restricted in their entry speed by travel distance at some
point), research in menu or icon selections focuses specifically on this.
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The benefit of pictorial presentation was investigated, e.g., by Niemeld and Saarinen,
who showed that searching for icons is easier than searching for text labels [Niemeld and
Saarinen 2000]. They also saw a decrease in search time when related icons were grouped
together. Grouping related emoji together could thus potentially also lead to reduced search
times. There are also ongoing efforts to model visual search, similar to Fitt’s Law capturing
movement, in order to make performance predictions for interfaces. Such modeling generally
falls into two categories: (a) trying to fit a mathematical model to experimental data, or
(b) trying to model cognitive processes. An example of the former is Bailly et al’s work,
who fit a mathematical model to predict search time in menus [Bailly et al. 2014]. Instead,
Kieras and Hornof try to model the cognitive process of vision, in order to predict where
people look and, in effect, how long it will take them to find a target [Kieras and Hornof
2014]. Their model, e.g., captures that color is the strongest influence on how well targets
can be distinguished. We could thus assume that pages of emoji very similar in color, (e.g.,
the smiley emoji: %, ©, &, e, ..) make it harder to find a specific emoji than pages with
stronger color differences (e.g., the hearts: @, @ @, ...

We can relate this back to the input methods presented in Section 5. For categorization
style input methods, we need to optimize the arrangement of emoji so that related emoji
are in the same category. Within a category, we would also expect more related emoji to be
close to each other. For example, it is sensible to expect +%, &, and < to be not just in the
same category, but also next to each other. A model for categorical emoji input methods
would thus need to help with both category assignment and within-category ordering. If
we only look at the more relaxed enumeration input methods, only the ordering aspect is
necessary. This can be a one-dimensional ordering for linear lists, but could also mean a
two-dimensional ordering for methods like EFmojiZoom.

Predictive methods also require an emoji similarity model. For example, if a user entered
“Hitting the road”, a model should be able to predict emoji such as @, or . In this example,
this would require capturing relationships between emoji and English language words. But
even just modeling relationships between different emoji, excluding other text, is helpful.
This could, e.g., be used to predict which emoji are likely to be added to a multi-emoji
response, with one or more emoji already entered. After typing T, it is likely users would
also want to add #: or @ to the message. This can also facilitate exploration where users
can limit the search space to a smaller set of candidates by providing a reference emoji.

In this article, we concentrate on a between-emoji similarity model which can be used
to guide emoji arrangement. The underlying motivation is that users would have an easier
time finding an emoji if it is close to similar ones. Instead of looking at each individual
emoji, they then only need to look at one to decide whether they are in the vicinity of the
one they are looking for. For example, when searching for the #¢ emoji, users can assume

they are close once they see any one of ®, ), or €. It would also be fair to assume other
sports related emoji are nearby, with 2., e.g., as close as possible to #. On the other hand,
if users see ®, <%, or &, they should be able to safely assume that #¢ is somewhere else.

Building a similarity model of emoji is a necessary step to optimize for these criteria.

7. TOWARDS A MODEL OF EMOJI SIMILARITY

As the number of emoji is currently growing with every new version of the Unicode standard
and more emoji make it into vendors’ emoji keyboards, the current presentation of emoji
in one or several lists is getting more and more problematic. The Google keyboard on the
Nexus 5, e.g., already contains 42 pages of emoji for its 822 emoji (the latest version of i0S
comes with about 1300 emoji). In our study in Section 4 we found that it is easy to miss an
emoji. Furthermore, exploration of available emoji is expensive and a good ordering of them
thus is necessary to achieve a reasonable average search time. While categories subdivide the
space, which speeds up search somewhat, the assignment of emoji to categories, as shown
earlier, can itself be problematic.
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Table Ill. Jaccard similarity coefficient for a set of example emoji pairs.
Emoji, Emojig  Similarity Emoji, Emojig  Similarity

C_]

L) @] 1.0 1.0
7 o

: ~ 075 075
[ )

0 ] 0.5 o A 0.5

oo,
0.25 0.25

X | ’

= 0.0 0.0

As we have described, many keyboards already make use of models to inform their de-
sign. For example, when designing a keyboard for the English language, key arrangements
can be chosen so that expected travel time between keys is minimized according to bigram
probabilities for letter pairs. However, there is no clear equivalent of model-based optimiza-
tion for emoji entry. Yet, as outlined in Section 6, a similarity model for emoji would help
in guiding design of emoji input methods. In order to make model-driven improvements of
emoji keyboards possible, we thus set out to build such a model.

In this section, we will look at two ways to build emoji similarity models: (a) based
on emoji annotations, as defined by the Unicode standard, and (b) based on semantic
information derived from the large number of tweets we collected. Both similarity measures
allow us to quantify which emoji are related and should be close together. We compare
performance of both models in a crowdsourcing study and explore differences in what aspects
of emoji they capture.

7.1. Deriving Emoji Similarity From Unicode Annotations

As mentioned earlier, all emoji are already tagged with some annotations?®. For example,
4% is tagged as animal, pet, nature, and cat. Those annotations are intended to help users
winnow down the set of emoji by entering the tag and then selecting matching emoji.

We initially hypothesized these annotations could be used to establish similarity between
any two emoji: by comparing their annotations. Similarly, Aoki and Uchida checked for
co-occurrence of emotional words in blog posts to derive feature vectors (and thus a way to
compare) for emoji [Aoki and Uchida 2011]. Let Temoji, be the set of all annotations for
Emoji,. Emoji are considered similar if they share many terms and disagree on few. We
thus chose the Jaccard similarity coefficient J as quantifier, which is defined as:

T s O T
J(TEmojiAaTEmojiB) ‘ Emoji 4 EmOJIB|

= . (1)
|TEmojiA ) TEmojiB }

Some examples of the resulting similarity values can be seen in Table III. This similarity
measure works well for clustering around concepts, such as food, animal, or vehicle. However,
it does, e.g., not include a notion of two emoji coinciding in an activity. For example, the
shown dissimilarity of € and ® only tells us that smiling and poodles are not the same
thing. From a different perspective, though, one could certainly be happy about a new dog or
a walk with a dog. This aspect is not captured by this categorical similarity, which does not
take context into account. Hence, we set out to find an approach for establishing similarity
that captures a wider notion of what emoji relatedness means.

28 Available at: http://unicode.org/repos/cldr/trunk/common/annotations/. Note that these annotations
have recently been updated. The annotations we use in this article are per Summer 2015. Some tags were
removed and 4, e.g., is now only tagged as pet and cat.
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7.2. Emoji Model Building from Tweets

To move beyond categorical similarity, we set out to build a similarity measure based on
how emoji are actually used. By building on actual use, similarity is hence defined only
by whether users enter emoji together or whether they enter emoji in similar contexts. We
hypothesize that this would be able to capture connections between emoji that are not
reflected in just their tags. For example, we would expect € and ¥ from our previous
example to exhibit some connection once we take into account the context around emoji.
We derive this contextual information from the large number of tweets we collected earlier.
Because most tweets only contain one emoji, we need to include all text to build a strong
model of emoji similarity. For example, if we were to see both ¥% and % individually in
tweets containing the word “besties”, we could conclude that they are probably related. We
chose to use a word embedding approach to map each emoji (and every other token) to a
word vector. Similarity between two emoji can then be determined through the similarity
of their respective word vectors.

In a word embedding, individual tokens are each mapped to n-dimensional numeric vec-
tors. For example, € might map to [0,0]7, & to [0,1]7, @ to [1,0]7, and % to [1,1]7.
In this example, one dimension encodes sentiment and one dimension encodes whether the
emoji is a face or a cat. Other emoji could then also be represented in this space, e.g., =
might be represented as [0.5,0]7. We can see how this basic embedding directly leads us to
a similarity measure. If two emoji have similar numeric representations in this space, they
are conceptually close. For example, an emoji at [0.2,0]7 and an emoji at [0.3,0]7 both
would be rather cheery faces, quite far away from an emoji at [0.9,0.8]7 which would be
some sad animal. In the word embedding we can compute the distance between two emoji
©*o and 'y with any norm. We chose to use the Euclidean distance function, given as

n

Z(”ai_ ”bi)Q' (2)

i=1

Instead, one could use other norms, such as Manhattan distance, or similarity measures
like cosine similarity. Note that we are not interested in the absolute distance between two
emoji, but aim to rank emoji to find the x most related ones.

However, in our example embedding it would be hard to represent an emoji like B as it
does not align to the chosen dimensions. A television set is neither face nor animal while also
not having a clear place in a sentiment dimension. To represent the diverse set of emoji,
we need many more dimensions. If we were to hand-pick the dimensions we might, e.g.,
use concepts such as sentiment, seriousness, edibility, or gendered. But picking the right
dimensions and then manually rating emoji would be a very complex and error-prone task.
Instead, we use a neural network to learn appropriate dimensions for our word embedding.
While those dimensions then do not individually map anymore to easily understood con-
cepts, automating this process enables us to make use of much more data than humans
could incorporate in a manual design.

To create the word embedding, we use a Python implementation?® of word2vec® [Rehiirek
and Sojka 2010; Mikolov et al. 2013]. Word2vec implements two versions of a neural network
language model: continuous skip-grams and continuous bag-of-words. For both algorithms,
there is only one hidden layer in addition to the input and output layers. We use skip-
grams, where the vocabulary forms the input layer of the neural network and context words
form the output layer. Thus, after learning, the hidden layer is tuned to predict the context
(surrounding words) for an input word.

2%http://radimrehurek.com/gensim/
30https://code.google.com/p/word2vec/
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During training of our model, input words and their context are taken from individual
tweets. For example, consider the following tweet:

not Jony lve @JonylveParody

Happy birthday @iTunes Music Store! 13 years of flawless updates, per-
fect software, and pure Ul/UX bliss. @ L4

3:56 AM - 29 Apr 2016

For the input token @, the context is given by surrounding other emoji and words. Thus,
when this tweet is used for training, it would strengthen connections in the hidden layer
which result in predictions of tokens like bliss, pure, or #:. In this example, we would also
train for a relationship between Ul and @. However, this pair is very unlikely to occur
elsewhere in our dataset, while the tokens birthday and @ likely occur together many more
times.

After training, the neural network is tuned to predict the likely context for every input
token. Hence, the output layer is a softmax regression classifier, outputting the probability
for each output token. If we feed # to the neural network it might, e.g., provide an output
vector that assigns a high probability to the rain token. Keep in mind that the input is a
one-hot vector: all values are set to zero, except the position representing the input token.
While the hidden layer is a large matrix, a multiplication with the input vector essentially
just selects one row from this matrix. If two input vectors result in the same output in the
hidden layer, then their predicted context is also equal. From this follows that if two tokens
share a similar context, their hidden layer weights must also be similar. We can thus use
those weights directly to form the word vector for our word embedding.

As discussed above, we need a higher number of dimensions for our embedding to cap-
ture concepts of emoji. We chose a balanced 300-dimensional space for this: between the
100-dimensional word2vec default and the 500-dimensions used in the similar setup of Im-
age2Emoji [Cappallo et al. 2015a]. We experimented with different hidden layer sizes in the
process, yet did not find noticeable differences. However, we only tested layer sizes between
200 and 400 dimensions. Very small layer sizes are likely not able to capture relationships
between emoji that well. While we do not limit the vocabulary of the model (a word vector
is trained for each word in the corpus), we ignore all words that occur less than 50 times.
Given the large size of our dataset (after splitting all tweets, based on whitespace, we are
working with 228 million tokens) this is very unlikely to affect proper words. However, it
helps limit the size of the input and output layers and thus helps with memory and time
requirements of word2vec.

One advantage of word2vec is that the amount of training data that can be used is not
limited by memory. Thus, while our tweet database is 27 GB large, we can stream each
tweet to the model during learning. We tokenize tweets by breaking them up at whitespace
and emoji positions after removing all punctuation (excluding punctuation emoji such as
1?). This ensures, each emoji is an individual token, even when no whitespace separates it
from a word or multiple emoji follow directly after each other. From the stream of tokens,
we filter out tokens that are hyperlinks or Twitter handles (e.g., “@ CHINOSAUR”).

In a final step, we split the model into two versions: one retaining all tokens and one limited
to only the 845 emoji tokens. For each token, we keep the 300-dimensional feature vector,
which are supplemented with frequency data for the emoji tokens. While we concentrate on
analysis of the emoji-only model in this article, both versions of the dataset are available
as supplemental data to this article. We hope that they will be useful as a base upon which
to build novel emoji entry methods.
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Table IV. Top 10 most related emoji for several example emoji.
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7.2.1. Exploring the Emoji Model. Once a word embedding for the tweet corpus is generated
it can be used to query for emoji similarity. As stated earlier, we use the Euclidean norm
to derive distances between pairs of emoji. In addition to basic ranking, word vectors also
allow for more complex queries such as “what is like T but not like & 7 (answers according
to our model, e.g., are @, “cakeday”, or %%, i.e., other occasions for presents that are not
Christmas). For more information on vector compositionality in word embeddings trained
with word2vec, such as in the example above, see [Mikolov et al. 2013]. In this article, we do
not further explore such multi-emoji relationships, but concentrate on pairwise similarity.

However, to get a more general idea of whether the model indeed learned relationships
between emoji, a visualization of clusters is useful. As the model is high dimensional, it can
not be plotted directly. We use an implementation [Pedregosa et al. 2011] of ¢-distributed
Stochastic Neighbor Embedding (t-SNE) [van der Maaten and Hinton 2008] to reduce the
number of dimensions from 300 down to 2 dimensions. Compared to other dimensionality
reduction methods, t-SNE performs well at capturing local structure and making clusters
in the data visually distinguishable.

The resulting visualization (see Figure 13), identifies several distinct clusters. On the right
side, e.g., we can see all clock face emoji close to each other, as well as clusters of vehicles
and writing-related objects. In the lower-left, food and animals form individual clusters.
Here, subclusters around more specific themes can be seen as well. For example, animals
living in the water form a distinct group, as do sweets or fruit. In the upper-left all smileys
can be found. A closer look reveals child clusters for loving, happy, and unhappy faces. In
general we see some emoji that cluster together tightly and others that are more loosely
coupled to others. Examples of close clusters are astrological signs (e.g., [8), moon phases
(e.g., @), blood types (e.g., ®), or buildings (e.g., ils). However, other emoji do not seem to
connect as closely, e.g., @ is further away from others. But for some emoji this just shows
that they are associated with multiple clusters or less tightly bound, compared to others
in the cluster. For example, the ¥ (dragon) is not as tightly bound to the animal cluster
as other animal emoji. Note that while this visualization is useful in identifying groups of
closely related emoji, it does not show any global similarity. Thus, two emoji that are on
opposite ends of the visualization are not necessarily less similar than two emoji only half
the width apart.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.



6:28 Pohl et al.

0.63
{0 Vi, ,
6 0.60 L t
> 2 t t +
2 = ?
3 4 S 057 4
S 8 4 4
[a) o 0.54
2 >
0.51 |
0 0.48
02 04 06 08 10 12 14 16 0 150 300 450 600 750
Distance to other emoji in embedding space Emoji similarity rank

Fig. 14. After building the emoji similarity model, we can investigate how emoji relate to each other. On
the left, we can see that similarity between emoji follows a rather skewed distribution. More closely related
emoji pairs are found in the long left tail, while most pairs bunch together with medium distance. On the
right, we explore whether there are some emoji that dominate the emoji similarity. For each of the 845 emoji,
we sort the remaining 844 emoji according to the pairwise similarity. We can then, e.g., look at the set of all
emoji ranked most similar. The variability (for each of the 844 possible list positions) describes how diverse
such a set is. We aggregate several ranks here to better show the change in variability.

Instead of showing relatedness for all emoji, we can also have a look at smaller groupings.
Particularly interesting is which emoji are most related to a given one. As we saw earlier, the
annotation-based similarity is limited in that it can only capture a category-centric notion
of similarity. Instead, our emoji model allows to query for similarity due to related use of
two emoji. In Table IV, we show a selection of emoji with their respective ten most related
emoji. As can be seen, deeper connections are revealed. For example, the & is detected as
being closely related to &, while they share no common Unicode annotations. Similarly, &
and € also share no tags, yet are closely related in our model. This is a first indication,
that our semantic model can indeed capture more detailed relationships between emoji. We
confirm this later on in a crowdsourced experiment.

Another measure of model quality is whether it captures emoji diversity. It would, e.g.,
be problematic if all emoji were slightly similar, with no strong differences between pairs.
However, Figure 14 shows that the similarity between emoji is actually heavily skewed.
From all possible emoji pairings, only some are closely related, with the majority of pairings
exhibiting medium similarity. This is a reassuring result as we indeed would expect the vast
number of emoji pairs to only be slightly similar. For example, we would expect emoji such
as ‘@ to only exhibit close relationships to a few other animal or ocean related emoji. With
a larger range of other emoji, like &%, ‘&, or &, we would not expect much of an overlap in
actual use and thus no large similarity.

We also wanted to make sure that similarity is indeed specific to the individual emoji. A
naive approach could, e.g., always rank ‘© high, as this common emoji often occurs together
with others, biasing the model towards frequent emoji. Hence, we looked at whether it was
always the same emoji being highly ranked (e.g., © again), or whether there was variability.
Here variability is defined as the size of the rank set (e.g., the set of all emoji ranked second
most similar) over the number of emoji (845 in our case). For example, if each emoji is
ranked most similar once, the variability would be 1.0. Figure 14 shows how variability
varies over the range of ranks. There is no strong bias and many different emoji are ranked
first. For example, the most highly ranked emoji exhibit a variability of about 0.56, meaning
that more than half the emoji appear at that rank (keep in mind this is always in relation
to a second emoji, thus there are 845 individual rankings).
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Fig. 15. We use agglomerative clustering to organize emoji into a relatedness-hierarchy. Here we find related emoji close together in individual branches.
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Table V. Top 5 most related tokens and emoji for several example tokens.

Token 1st gnd grd 4th 5th {st 9nd grd  4th  gth
Birthday bday birthdayyyy birthdayyyyy 18th birfday e 5 T és 4
Sad upset depressed upsetting saddening  heartbreaking ¥ (’ = = -

Vacation vacay vaca holiday vacations holidays w2 _-/i o
Drunk tipsy stoned intoxicated sober hammered 3 . Y
Love adore loooove luv loveee loveeee ) " ' .' »

Finally, Figure 15 shows a hierarchical view of the emoji model. Where Figure 13 shows
a global view of similarity, here related emoji are found in nearby nodes of the hierarchy.
To generate this view, we use agglomerative clustering where nodes are successively merged
(based on minimal distance) until a root node has been determined. We can look closer at
one branch of the hierarchy: @

000

Here, we see that vehicles cluster together, with emergency and heavy vehicles forming
their own subclusters. However, such a rigid clustering also creates artifacts due to the
merge criteria (we, e.g., only find & in a nearby branch). We use Ward’s criterion here,
which tries to minimize the variance of merged clusters. A different approach would be to
minimize the maximum distance in a cluster, more heavily penalizing outliers in a cluster.
However, not all odd locations are due to the clustering. For example, note that ‘i
(showing the Tokyo Tower) is shown as very related to #B—more so than to e. Thus,
people apparently interpret it erroneously as the Eiffel Tower. Such interpretations can be
challenging: should keyboards arrange emoji as intended or as interpreted? And should the
layout for Japan (where users probably recognize the tower) be different than elsewhere?

7.2.2. Exploring the Full Model. While we concentrate on the emoji-only model in this article,
we actually have a more complete model for all tokens we used in training the emoji-only
model. Here, we take a short look on how those other tokens relate to emoji and each other.
Note that because we only trained on tweets, the word model has lower quality coverage
than other models trained through word2vec. The usual approach is to include a larger
secondary corpus to build a more in-depth model of word relationships. A common method,
e.g., is to also use the English Wikipedia corpus during training.

Table V shows rankings for five example tokens. We show ranking for other word tokens
and emoji separately, because other words are commonly much more related than emoji.
Unsurprisingly, it can be seen there is strong semantic connection to different spellings of
the same word. While we do not apply word stemming, this could be used to prune the
vocabulary before building the model, in order to omit tokens such as “birthdayyyyy”. But
we can also see that the closest matching emoji for the given query tokens capture the given
token quite well. For example, all birthday-related emoji match the theme and could be
used in birthday messages.
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7.3. Evaluating Model Performance

So far, we have shown overviews of the models and examples that demonstrate the quality
of the results. However, we wanted to confirm the similarity predictions with data from a
second source. Hence, we gathered human ratings of emoji similarity to compare with our
computed similarity data from both the tag-based and the semantic model.

We ran our crowdsourcing study on CrowdFlower3!, which, in turn, recruits contributors
from a larger range of channels®?. In each task, we showed contributors ten emoji pairs and
for each asked them: “How related are these emoji?” In the task instructions, we further
specified that: “Two emoji could be related because they describe a similar concept, or because
they are commonly used together. If you are unsure, think about how likely you are to use
the two emoji together in a message.” Contributors gave their response on a 7-point Likert
scale ranging from “unrelated” to “very related”.

To ensure rating quality, we designated a set of test questions for our task. We drew
test questions from the emoji pairs where our semantic model indicates strongest similarity.
After manually checking appropriateness and quality of those pairs, we selected the 15 most
closely related ones as test questions. The selected pairs were:

-8 8+-8 C+9 @+ 9+ %
®@+re T+ M+ 1 D+ @
v+ &+ &+ A+ &+ 0

In each task, one of the questions was automatically included from this test question set. If
contributors did not answer this question correctly (indicating some level of relationship)
they were excluded from the task as they are deemed unreliable.

The rest of the emoji pairs to rate were drawn from two different groups: (1) the 5%
most related emoji pairs (per our semantic model), and (2) the remainder of emoji pairs.
We excluded emoji pairs already used as test questions from this selection. The total number
of emoji pairs is thus given as: (8‘215) —15 = 356575. From each of those groups, we randomly
selected 45 pairs for inclusion in the crowdsourcing study. Hence, we use 45 out of the 17829
pairs in the top 5 % and 45 out of the 338746 remaining pairs. For each of those 90 pairs, we
collected 20 human ratings for a total of 1800 trusted judgments. Those 1800 judgments are
trusted in the sense that CrowdFlower deems the raters reliable. Contributors are flagged as
unreliable if they do not correctly responded to the test question in their task. Furthermore,
before being served an actual tasks, contributors had to take a quiz composed of just test
questions which, when failed, immediately flags them as unreliable.

In total, we had 52 participants contribute trusted judgments in our study (all ratings
are available as supplemental material to this article). The median (and maximum) number
of judgments per participants was 60. Contributors hailed from a wide selection of places,
but most of them were from India (6), Serbia (5), Venezuela (4), Malaysia (4), and Turkey
(3). Overall, trusted contributors provided 2525 judgments (if we include the 98 rejected
participants, who failed the quiz or are untrusted, the total number of judgments is 3265).
However, 725 of those were test questions and only used to determine contributor reliability.
This leaves us with a final 1800 judgments. Agreement of raters, per Krippendorff’s alpha,
is 0.39 (95 % bootstrapped confidence interval: 0.30 — 0.48). This shows rating relationships
between emoji was no easy task for raters. We can thus expect some noise when relating
this back to our model predictions.

3lhttps:/ /www.crowdflower.com/
32https:/ /www.crowdflower.com/labor-channels/
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Fig. 16. Spearman’s rank correlation coefficient for comparisons of human raters, the semantic and tag-
based models. For comparison, we also show how human raters correlate among themselves (random split
between workers). All correlations are significant. Error bars show bootstrapped 95 % confidence intervals.

7.3.1. Results. In our analysis we only consider ratings for the top 5% and remainder
groups, but exclude the test questions. Emoji pairs in the top 5% percentile, per our se-
mantic model, received a median rating of 4 (higher equals more related) in the 900 crowd-
sourced ratings. On the other hand, the 900 emoji pairs from the remainder of the dataset
only received a median rating of 2. We used a Mann-Whitney’s U test to compare the two
groups and found a significant effect; U = 544873.0,p < 0.0001. Thus, emoji pairs consid-
ered the most related by the semantic model are also seen as significantly more related by
human raters.

Contributors also had an easier time rating emoji pairs from the top 5% group than
from the remainder group. Krippendorfl’s alpha for the former is 0.42 (95 % bootstrapped
confidence interval: 0.32 — 0.52), while the ratings for the remainder group only show an
alpha value of 0.20 (95 % bootstrapped confidence interval: 0.07 — 0.35) This is likely due to
the top 5% group having more within-group similarity (per our semantic model), while the
remainder group contains many emoji pairs with no clear connection. In such a case, some
raters might see connections where others see none. For example, the relationship between
s (barber pole) and & is only apparent in some cultures and would likely lead to very
different rating by Americans and Germans.

So far, we have shown that our model’s predictions are accurate on the level of distinguish-
ing the top 5% most related emoji from the rest. However, we also wanted to see whether
similarity estimation holds on the individual emoji pair level. For this we check whether
there is a significant correlation between the similarity scores given by the human raters
and by the two models. All correlations in this section are given via the Spearman’s rank
correlation coefficient 5. See Figure 16 for an overview of how correlation varies for different
groups and comparisons. Figure 16 also shows bootstrapped 95 % confidence intervals for
correlation, while we here only report averages. Over all emoji pairs with human ratings, we
found that similarity predictions of the tag-based model and the human raters were corre-
lated; rs = 0.50, p < 0.0001. The distance predictions of the semantic model and the human
similarity ratings showed similar correlation; r4 = —0.37,p < 0.0001. Correlation between
random subsets of human raters is also at about the same level; rs = 0.39, p < 0.0001.

Comparing human ratings and the tag-based model for the top 5 % group shows significant
correlation; ry = 0.48,p < 0.0001. The same holds for the semantic model; rs = —0.31,p <
0.0001. Similarly, human ratings and tag-based similarity predictions for the remainder
group are significantly correlated; rs = 0.28,p < 0.0001. Finally, a significant correlation
is also observable when comparing human raters and semantic model predictions; rs =
—0.11,p < 0.001. Within the human raters, the top 5% group shows higher correlation
than the remainder group; rs = 0.41,p < 0.0001 and s = 0.27,p < 0.0001.
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Fig. 17. We derive agreement between the semantic and the tag-based model from the overlap in the
top ranked emoji. For example, the two models, on average, have 30 % of the top five emoji in common.
Agreement increases as more ranks are considered. Error bars show bootstrapped 95 % confidence intervals.
On the right, we highlight the five emoji with the respective highest and lowest agreement (averaged over
different rank sizes).

7.3.2. Discussion. In our crowdsourcing study, we saw significant correlation between hu-
man raters and both the tag-based and the semantic models. This shows that both models
indeed capture differences in emoji similarity. However, there are differences between the
two models. While both align with human raters, as we have seen, they sometimes disagree
on the similarity of emoji. This is due to them focusing on different aspects of similarity:
the tag-based model denoting whether two emoji show the same or a similar thing, while
the semantic model captures a more fuzzy notion of relatedness, based on co-occurrence in
or similar use. We hence need to further explore the differences between the two models.

7.4. Comparing Tag-Based and Semantic Emoji Models

As we have seen, both models make similarity predictions that align with human raters.
Yet, their predictions are not the same and they both capture different aspects of emoji
similarity. Here, we take a closer look at where the two models agree the most and the least.

In this section, we define agreement between the two models as the amount of overlap in
the emoji similarity ranking they generate. For example, we could ask both models which
ten emoji are most similar to &, giving us two sets =4 and =p. The agreement is then
given as:

24N =5
T 3
|.§AU.§B| ( )

which is equivalent to the Jaccard similarity coefficient from Equation 1. Note that we do
not consider rank position in this definition of agreement, but only whether it is included in
the other result set or not. After all, for reasonably small result set sizes it does not matter
much which rank position an emoji holds. For example, whether an emoji is 3'¢ or 4" in a
eight item result set has no strong impact on retrieval time for that emoji if all items are
shown at once (e.g., in the autocorrect bar).

Figure 17 shows agreement between the two models for varying sizes of rankings. For
example, when we only consider the top ranked emoji, the two models agree about 20 %
of the time. Naturally, increasing the size of the respective result sets increases agreement
(at size 844 every other emoji would be included and agreement would be a guaranteed
100 %). Overall, there is substantial disagreement between the two methods. However, the
agreement is not equal over all emoji, but differs depending on which emoji are considered.
Figure 17 thus also shows the five emoji where the two models agree and disagree the most.
We consider agreement over different ranking sizes when computing this average per-emoji
agreement.
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Table VI. The semantic and the tag-based model differ in what they capture about emoji. Here we explore
the differences for the five emoji where agreement (as per Figure 17) between the two models is lowest and
the five where it is highest. Note that in this set only ¥\ sees a high frequency of use (it was the 23rd most
common emoji in our Twitter dataset).

El’Ilei Model 1st 2nd 3rd 4th 5th 6th 7th 8th gth 10th
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Tag-based d! v 5 L W ] ? ‘ g
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o
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= Tag-based & S). ‘\‘ }r\\ Q'e RN <)\ IO 2 \
E Semantic ‘ o0 m 3 @ @ oD ) ,"OX\ EFF
Tag-based @] 4 6‘9 & ‘\‘ ‘° %
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S gbesa @ R fe @ & @ oo =
N PN ) X ==
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8 Semantic { -5 é\/ =/
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Tag-based Il N/

2 Semantic /.\ T/IT\ i i
== Tag-based /.\ ﬁ é %

The two models have high agreement for emoji with a straightforward interpretation,
but disagree where interpretation is more open. For example, <& is likely to allow for less
flexibility in interpretation than #%. The later could be used to describe actual fires, trends
that are hot, food that is spicy, people that are attractive, stores that are busy, and possibly
many more scenarios. On the other hand, trains do not lend themselves to equal levels of
ambiguity in interpretation.

We can take a closer look at these ten extreme examples of agreement and disagreement
between the two emoji models. For each of those emoji, Table VI shows the ten most
similar ranked emoji by each of the models. As can be seen, where there is agreement the
sets largely overlap. Even the ranking within the two results is close. However, when there
is strong disagreement, the two result sets are very dissimilar. Yet, the way the results differ
can tell us a lot about the strong suit of each of the two models.
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A good example of model differences is their ranking for the H emoji. The semantic
model makes several predictions that use battery as a stand-in for general energy level. For
example, drinking a € to wake up, or the quality of a wireless connection M. We can also
see a direct link between the battery and the phone it is often in, with emoji like @ or

. Likewise, @ could be used to indicate a “dead” phone, but could also indicate that a
user is very tired. While the presence of the # emoji might be puzzling at first, there is
a strong connection between # and . As an emoji combination, #< is sometimes used
to reference a meme on Twitter®®. On the other hand, the tag-based model can not make
good predictions for the B emoji. This is primarily due to the fact that this emoji is only
annotated with two tags: “battery” and “object”. Yet the “battery” tag is not shared with
any other emoji and the ranking thus degenerates to a random selection of other objects.
One could add additional tags to emoji, but another option might be to find connections
between tags. For example, there is also the “electricity” tag, which is used by + and 4,
but, surprisingly, not by H itself. The same holds for the “electric” tag, which is used for
five emoji, yet also excludes H.

Poor tag coverage is a fundamental problem of the tag-based model. Overall, 1175 different
tags are used to describe the 845 emoji we investigated. Yet, while 2 has 15 tags, 12 other
emoji only are described by two tags (e.g., =, or #). These are the extremes though and
the median number of tags per emoji is 5. The different tags are very unevenly distributed
though. While 274 emoji are tagged as “object”, 215 as “symbol”, 199 as “nature”, and 184
as “person”, use count quickly goes down and 719 tags are only used by a single emoji. For
tag-based similarity, these single-use tags are detrimental and do not help with establishing
relationships between emoji.

An emoji with better tag coverage is €, which is annotated as “body”, “clothing”, “foot-
print”, “person”, and “print”. Hence, the tag-based model matches this emoji with other
body parts and clothing items. This is an emoji the semantic model does more poorly with.
However, it does identify a connection between ¥ and walking/movement related emoji
(dash symbol) and 2. In fact, this connection to walking is not identified by the tag-based
model. Checking back with the emoji clusters, as shown in Figure 13, we can see that ¥
does not connect well to larger agglomerations of related emoji. Additional training data
might help strengthen some connections: we only collected 14609 tweets containing €¥.

Overall, the closer look at these emoji strengthens the impression that object-related emoji
allow for more consensus in similarity estimation than emoji allowing for more abstract
interpretations. However, it is precisely these emoji that add to the vibrancy of emoji use in
messaging. Adding a i when going camping makes the message more colorful and playful.
Yet, the B does not allow for a range of expression as wide as, e.g., the #& emoji.

8. CONCLUSION

In this article, we have outlined and explored the space of emoji text entry. Starting from
an introduction to emoji, we first looked at how emoji are used and how well current input
methods support them. As we showed in a study of the state of the art, arrangement of emoji
into categories is a weak spot of current emoji keyboards. Such organizational problems were
also described in the study of EmojiZoom [Pohl et al. 2016]. Participants preferred the two-
dimensional layout per the Unicode sorting to the ordering of the Google keyboard (which
slightly deviates from the Unicode one). Hence, we identify improvements to emoji ordering
as an important direction for research on emoji.

33http://blog.getemoji.com/post /134792876960 /what-does-the-frog-and-teacup-emoji
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The large number of emoji makes it hard to manually optimize emoji ordering though. We
have motivated building an emoji similarity model as a way to allow automatic optimization
of or reasoning about emoji layouts. This would also scale to different cultural context, e.g.,
by only considering German language tweets for a German emoji model. We have presented
two candidate models to establish emoji similarity: (1) based on emoji annotations and (2)
based on semantic information on emoji. In a crowdsourcing study, we have shown that
both models correlate with human raters. Yet, what each model captures is quite different.
Direct comparison of the two models indicates that semantic similarity is able to capture
more nuanced relationships of emoji. However, this is prone to more noise than tag-based
comparison. On the other hand, tag-based approaches have poor coverage for many emoji.
As the semantic similarity approach does not rely on manual annotation, it scales better
with the large number of possible emoji pairings.

Emoji have seen strong uptake and cultural influence. The fact that they are part of the
Unicode standard also gives these characters a likely higher permanence than application-
specific smileys or stickers. The Unicode Character Encoding Stability Policies®® explicitly
state that “Once a character is encoded, it will not be moved or removed.” Hence, emoji are
here to stay.

But, as we discussed, entering emoji is quite different than entering text. Emoji have some
unique characteristics, such as their lack of a clear phonetic interpretation and their visual
nature. Existing keyboard layout optimization also does not translate well to emoji entry.
Instead of a layout optimized for entering character sequences, emoji require input methods
that optimize for search and exploration. Our emoji similarity model can inform this process.
As we have shown, this model can be used to structure the emoji space and thus, e.g., inform
category assignment. It could also be used to retrieve emoji fitting a current context (text
or other emoji). Yet, while making emoji available via a retrieval method might work for a
few users, it is likely inadequate for a large number of users. Exploration of available emoji
is a critical aspect in emoji entry. While familiarity with all letters of Latin script is assumed
in other keyboards, emoji keyboards cannot make the same assumption.

Entering emoji still means entering text, not uploading an image. Compared to entering
Latin script though, appearance plays a crucial role. For example, while @, B, B, &, 9,
and [7) all show closed books, they each have a distinct color. While there might be a clear
mapping when users actually want to describe, e.g., a red book, most of the time the choice
of book emoji comes down to taste. The word book itself does not pose the same trouble. It
is only once the book becomes a notebook or novel, that the meaning changes. As the choice
of book emoji thus depends on taste and might be different depending on mood, it is not
sufficient to just show one of them. Exploring the available emoji and picking the right one
for the current situation is a critical aspect of emoji entry.

This visual variability of emoji relates back to where we initially started: emoji can add
playfulness to messaging and allow users to express themselves on a new level. The most
frequently used emoji in our Twitter dataset all add to a text on the emotional level.
Whether a messages is followed by < or 2 can dramatically change the tone. For example,
consider receiving either “Susan’s coming over later © 7, or “Susan’s coming over later = ”.
Emoji are a first to make access to this kind of expression easy and ubiquitous.

Yet, the emoji entry we explored in this article is but one method to add such level of
expression to messaging. As already noted in the introduction, emoticons are the classical
example of this kind of content. However, there are many possible extensions here and
other means to give expressive power to users. We take a closer look at those methods,
“beyond emoji entry”, that are possible paths to support the underlying goal: allow users
to communicate in a playful and casual way.

34http://unicode.org/policies/stability policy.html
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Fig. 18. Unicode characters can be combined to build emoticons more diverse and expressive than those
restricted to only ASCII characters. Shown here are kaomoji: the Japanese form of emoticons.

8.1. Outlook: Beyond Emoji

So far, we have focused specifically on emoji, yet the Unicode standard actually enables
a much wider range of textual expressions. As shown in the introduction, several of the
characters encoded in Unicode can also be combined to form emoticons ( “emotion icons”).
Other characters can be appropriated to stylize text.

Where classic emoticons like :), 0_o, or :D only make use of ASCII characters, a much
wider variety of emoticons is possible when including more exotic characters (for some ex-
amples see Figure 18). One of the more common ones, e.g., is the look of disapproval®: T_3.
This emoticon repurposes the 3 (tha) letter from the Kannada alphabet to symbolize an eye.
However, entering such emoticons is not an easy task. Some soft keyboards make emoticons
available (e.g., the Windows Phone 8.1 keyboard has a tab for this which contains emoticons
such as ©.Q), but the selection is small. A large number of third party apps try to fill this
gap and include emoticons ready for use via copy and paste—an approach also supported by
dedicated websites, such as disapprovallook.com. The problem with all these methods is that
it only allows users to use what is already given. However, it makes entering novel emoticons
restrictively hard and relegates experimenting with textual expression to the desktop. While
users could install a range of keyboard languages to access more characters, such keyboards
are tailored to text entry in that language, not repurposing of individual characters—some
keyboards also use input methods not familiar to regular QWERTY users. As keyboards on
mobile devices have moved to have dedicated emoji entry modes, we can envision keyboards
moving beyond this state of the art and making an even larger character set available.

Unicode characters can also be used to stylize Latin script (see Figure 19). Here, instead
of composition, appearance is changed by using stand-in characters. For example, instead
of U+6B, one can use U+1D528 when entering the letter k to get the fraktur version k. The
Unicode mathematical alphanumerics block, e.g., contains several stylized variants of Latin
letters, which allows to effectively control the font of messages where no font information
can be transmitted. Finally, Unicode also contains combining marks that are designed to
modify other characters. While this can, e.g., be used as a way to add accents to characters
(such as in ), it also allows to scramble text. One variant of this is zalgo®® text (Figure 19,
right), which strives to give text an appearance alluding to insanity. As with Unicode emoti-
cons, there is currently no convenient way to add combining marks to characters on mobile
devices. However, some keyboards relegate characters with diacritics to menus attached to
the respective keys (e.g., the German keyboard on Windows Phone 8.1 offers selection of a
or & from a popup, shown after long pressing the a key). Such a mechanism could potentially
be extended to larger sets of alternative characters and diacritical marks.

35http://knowyourmeme.com/memes/3_8-look-of-disapproval
36http://knowyourmeme.com/memes/zalgo
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Fig. 19. Unicode characters can be used to stylize text. The first four examples use characters from the
enclosed and mathematical alphanumerics blocks while the zalgo text uses combining marks.
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Fig. 20. Some third-party keyboards allow GIF entry. Shown here are (1) Fleksy, (2) Ginger Keyboard,
and (3) EmojiKeyboard Pro.

But Unicode characters, as emoji or emoticons, is only one way expression is added
to messages. Another popular approach is to add images, e.g., in the form of memes or
animated GIFs. Such content was just recently shown by Bakhshi et al. to be significantly
more engaging than just text [Bakhshi et al. 2016]. The Unicode consortium itself notes
that, in the long run, applications should support arbitrary images in text:

The longer-term goal for implementations should be to support embedded graphics,
in addition to the emoji characters. Embedded graphics allow arbitrary emoji
symbols, and are not dependent on additional Unicode encoding.>”

Today, several third party keyboards such as Flesky, Ginger, or EmojiKeyboard Pro38 al-
ready also allow “typing” images. Such images are either found by browsing tags or searching
with a phrase (see Figure 20 for several interface examples). One common use of such im-
ages is in the form of a reaction ¢if>°, where an animated gif is used to represent approval,
happiness, shrugging, or eye rolling.

With emoticons, emoji, and images, mobile text entry faces two challenges: (1) how to
make the large set of existing content available, and (2) how to allow users to create their
own content for personalized expression. For emoji we only need to solve (1), yet if arbitrary
images and emoticons are allowed, creation becomes a crucial aspect. However, while there
are several web-based tools and browser extensions for styling text or creating memes, many
of those are not easily accessible on mobile devices. Yet being mobile need not mean that
users are necessarily restricted to existing content. In fact, as demonstrated by 12Pixels,
applications are able to allow creative making on mobile device much more restricted than
todays smartphones [Willis and Poupyrev 2010]. As text can often be insufficient as a
means to communicate emotions, this kind of visual language can fill in the gaps and offer
an additional means of expression. If we restrict input to just text or make it hard to express
emotions, we cannot communicate with each other as effectively as possible.

3Thttp://www.unicode.org/reports/tr51/#Longer_Term

38See http://fleksy.com, https://play.google.com/store/apps/details?id=com.gingersoftware.android.key-
board, and https://play.google.com/store/apps/details?id=com.emoji.coolkeyboard respectively

39Gee, e.g., http://giphy.com/categories/reactions/
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