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ABSTRACT
We present a novel way to recognize users by the way they
press a button. Our approach allows low-effort and fast inter-
action without the need for augmenting the user or controlling
the environment. It eschews privacy concerns of methods
such as fingerprint scanning. Button pressing behavior is suf-
ficiently discriminative to allow distinguishing users within
small groups. This approach combines recognition and action
in a single step, e.g., getting and tallying a coffee can be done
with one button press. We deployed our system for 5 users
over a period of 4 weeks and achieved recognition rates of
95% in the last week. We also ran a larger scale but short-term
evaluation to investigate effects of group size and found that
our method degrades gracefully for larger groups.
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INTRODUCTION
Differentiating who is using a device among a group of co-
operating users is a frequent task in ubiquitous computing
systems. We might, e.g., be interested in who just entered a
room, who picked up a phone, or who is activating the dish
washer. In such scenarios, security might be less important
than convenience, i.e., minimizing the burden on users. Such
convenience can be achieved by using biometrics or instru-
menting users (e.g., RFID tags). However, this comes at a
cost of privacy or can be impractical or out of place in some
contexts (e.g., at home).
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Figure 1. Pushing the button next to the coffee machine, William is
recognized and his coffee tally is updated.

A number of ways to recognize users with low effort have
been introduced [14, 19, 20]. Along the same lines, we pro-
pose differentiating users just by how they press a physical
button. Because an explicit action is required, this avoids
problems of accidental activations as in more automated sys-
tems. Furthermore, this is a common action—if every button
in an environment has the capability to recognize who pressed
it, an abundance of context information is generated. More-
over, pressing a button is a low-focus activity and can be done
casually while being engaged elsewhere [18], building on
gross motor skills, inexact, and inattentive interaction [5, 8].

User recognition via button pressing is particularly suitable in
one-off interactions, where users are not engaged for long and
where, at the extreme, the interaction itself can be reduced
to one button press. One such scenario, that we take as an
example here, is tallying coffee consumption in an office (see
Figure 1). Often this is done using a paper tally sheet where
users mark every coffee. However, this requires tedious man-
ual balancing at some point and requires cooperating users, as
tally marks can easily be manipulated. We propose changing
the task from making a mark on a paper sheet to pressing a
button next to the coffee machine—and eventually replacing
the button on the machine with a button that recognizes users.

We built two prototypes of buttons that can recognize who
pressed them: (1) a portable push button that integrates a
pressure and a distance sensor, and (2) a wall-mounted version
that extends a standard light-switch with a distance sensor.
These sensors are low cost, compact, and robust to changing
conditions. We did not use computer vision methods to make
the approach resilient against lighting changes. This choice of
sensors also allows for lightweight and transient interactions.
Prolonged contact of the user with the interface is not required.
The two prototypes are similar to the button designed by
Spelmezan et al. [23], whose focus is on recognizing explicit
gestures, rather than implicitly recognizing users.
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In two evaluations, we investigate (1) recognition rates for
different group sizes from a large set of 39 users, and (2) in-
use system behavior over a 4 week period of time with a fixed
set of 5 users. In our long term deployment, we observed
fast improvement over time with over 94 % recognition rate
in the last week. Users can correct mis-classifications with
another button press—a low cost disambiguation approach.
This extra action boosts recognition rates to 99 %.

RELATED WORK
There have been a number of approaches to low-cost user
recognition. Commonly, biometric features such as finger-
prints [7] or hand contours [21] are used. However, biometric
data can be privacy sensitive and users might have objections
to providing it for a task such as getting a coffee. Users’
typing patterns also fall under this category and have been
extensively exploited [11–15, 17]. Typing approaches, how-
ever, are not applicable to short, transient interactions, where
no text entry is required. Computer vision has been used to
identify users based on their shoes [20], backs of hands [19],
or in-air gestures [1]. Any method using vision relies on
proper lighting though, restricting possible scenarios. Other
properties used include walking behavior [24], body capaci-
tance [6], deviations in touch interaction [4], or combinations
of many sensors for passive user identification [22].

ONE-BUTTON RECOGNIZER
Our recognizer builds on the observation that button-pressing
behaviors differ slightly. This was previously illustrated by
Kim et al. [10], who used such pressure profiles to recreate
haptic sensations for augmented reality buttons. Instead of
recreating the button pressing sensation, we set out to use
the nuances in button pressing for differentiating users. As
shown in Figure 2, the sensor readings of a button press vary
distinctively between different users.
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Figure 2. Comparing the normalized distance and pressure curves for
4 participants. The variation in button pressing behavior is apparent.

Button Prototypes
We designed two prototypes for two distinct form factors: (1)
desk, and (2) wall-mounted. Both buttons include a Sharp
GP2Y0A41SK0F infrared distance sensor (4–30 cm operating
range) to detect how a hand approaches the button. The
sensor works reliably over a wide range of lighting conditions.
Both prototypes take pressure (where applicable) and distance
readings via the 10 bit ADC of an Arduino Nano. Data is
sampled at about 400 Hz and, via a serial connection, relayed
to a host computer for further processing.

Desk Button
The desk button is 3D-printed in multiple parts (shown in
Figure 3). Four springs separate the top of the button from the
base to provide return force and give the button a proper feel.
Force sensing is performed with an Interlink FSR402 pressure
sensor (sensitive in the 0.2–20 N range), attached below the
spring contact plate. A small protrusion on the bottom of the
contact plate focuses the force on the pressure sensor. The
sensor gives us a pressure profile over the whole duration of
a button press. However, we threshold the pressure values to
derive a binary switch state. In this prototype the distance
sensor is placed in front of the button.

Figure 3. Our pressure-sensitive button contains an FSR sensor in a
3D-printed enclosure. Springs provide return force and push resistance.
An IR distance sensor is attached at the side.

Wall-Mounted Button
For the wall-mounted prototype, we modified a Voltomat
MIKRO push-button light switch. This is a standard product
from a hardware store. We mounted this button on a wall
and embedded the distance sensor underneath (see Figure 4).
Future versions could integrate the distance sensor in the
button (there is some space for a light which could be repur-
posed). Due to space constraints, this button did not integrate
a pressure sensor. Instead, the switch itself is connected to
the Arduino which reads and relays the binary switch state.

Figure 4. We augment a standard light switch with a distance sensor
to enable identification of who pressed it. Future switches could embed
the sensor directly in the enclosure.
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Figure 5. We build features from six times along a button press tra-
jectory: attack start t0, press start t1, attack end t2, release start t3,
press end t4, and release end t5. Features are then defined as time differ-
ences for six distinct phases of the button press. For the desk button, we
threshold the pressure values (shown dashed) to compute button state.

Feature Extraction
We derive our features from six points along the trajectory
of a button press (see Figure 5). Points t1 and t4 mark the
beginning and end of the actual button press. In the wall but-
ton this is just the switch state. For the desk button, however,
we threshold the continuous pressure values at 80 % of the
maximum to derive binary button state.

Starting from those two points, we search for the start and
end of the attack (t0 and t2) and release phase (t3 and t5)
respectively. Those points are derived from the local extrema
of the distance sensor signal around the start/end of a button
press. Note that those points can be on either side of the
button hit event, depending on the way the button is pressed.

From those points we derive six features. The overall interac-
tion time ∆0 and button down time ∆5 capture speed. We also
take into account two different measures of attack and release
timing. For attack timing, we include the time it takes from
the start of the approach to both (1) the button pressing ∆1,
and (2) the end of the approach ∆2. Similarly, during release
we use overall withdrawal time ∆4 and the time from the re-
lease of the button ∆3. We use those features to discriminate
two different button pressing behaviors: (1) Some users first
press the button, then lower their palm. In this case ∆1 is
longer than ∆2. (2) Other users attack the button with their
palm already lowered. In this case ∆2 is longer than ∆1. This
behavior holds inversely during the release phase.

Training the Recognizer
We use a random forest classifier, because they directly handle
multiple classes, and are less sensitive to outliers [3]. In our
evaluation, we only used a fixed numbers of training samples
per user. Our classifier generated 10 random trees per forest
using Gini impurity [2] as split criterion.

EVALUATING RECOGNITION PERFORMANCE
In a first study, we investigate how well we can distinguish
users in groups of different size and how many button presses
would be needed for training. For this, we set up our desk
prototype for two weeks in our lab (for use by staff and stu-
dents) and in a classroom (for use of students in a course).
Participants each time entered their name on the connected
laptop and then pressed the button. We did not instruct par-
ticipants in any way as to how to press the button. Overall,
we gathered data from 44 participants (7 female) in this way.
However, in our analysis we remove all users who pressed
the button less than 30 times (leaving us with 39 users).

We investigate the performance for group sizes of 2 to 10
users and with 2 to 30 button presses used as training data
(at intervals of 2). For every combination of group size and
button presses, we generate 1000 permutations from our data
for subsequent testing. We do this to test the robustness of
our classifier against group effects, such as subsets of users
with similar button pressing behavior.

Accuracy testing for each permutation is done with leave-
one-out sampling [9]. This yields binary results, which we
aggregate to a mean accuracy score per permutation. Testing
one sample against a classifier trained on all remaining data
fits well with our intended use case: classifying one new
button press at a time. For each combination, we aggregate
these accuracies and calculate the 95% confidence interval of
the mean via bootstrapping with 10000 iterations.

Results
How well we can identify users largely depends on the size
of the user set. In Figure 6—showing recognition rate for all
tested combinations—this can be seen in the vertical orienta-
tion of the contour lines once a minimum amount of training
data is used. When using 24 button presses for training, e.g.,
accuracy drops almost linearly from 95.0% (two users) to
78.2% (10 users). Overall, accuracy is less sensitive to the
amount of training data. For groups of 5 users, e.g., recog-
nition rates exhibit a quick rise from 69.4% for 2 samples
per user to 82.3% for 10 samples. This is followed by slight
improvement with 30 samples giving 90.3% recognition rate.

We saw high variance in accuracy when using small numbers
of training samples. For example, using only 2 button presses
is quite unstable and we observed±16% standard deviation of
bootstrapped recognition rates. The stability of the classifier
goes up for larger training sets, e.g., being as low as ≈±3%
for groups of ten users when using more than 10 samples.

2 3 4 5 6 7 8 9 10
Group size

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

B
u

tt
o
n

 p
re

ss
e
s 

u
se

d
 f

o
r 

tr
a
in

in
g

 p
e
r 

u
se

r

±16%

±12%

±9%

±8%

±7%

±6%

±5%

±5%

±5%

±5%

±5%

±5%

±5%

±5%

±5%

Figure 6. Recognition rates for group sizes from 2 to 10 users and but-
ton press data from 2 to 30 presses. Recognition rates were computed
using 10000 bootstrap samples. On the right we show the average stan-
dard deviation for each for row—training a recognizer with low num-
bers of button presses results in high variance, which goes down with
more training data. Group size does not influence variability as much.



From this data we can compute the expected number of button
presses during an interaction needed to reliably identify a
user. Table 1 shows this number for different group sizes. For
groups of 5 users with 30 samples each, a user is recognized at
the first button press with 90.3% probability and at the second
button press with 99.1% probability. After the button has been
pressed three times, the expected probability of recognition
is over 99.9%. Given the very low effort to correct a mistake
(average time of a button press is M = 0.4s, SD = 0.1s), a
possible additional button press takes but a mere instant.

Group size 2 3 4 5 6 7 8
E [# of presses] 1.04 1.08 1.11 1.13 1.18 1.20 1.23

E [δ (1st press)] 0.04 0.08 0.13 0.14 0.15 0.17 0.19
E [δ (2nd press)] - 0.00 0.01 0.02 0.02 0.03 0.04
E [δ (3rd press)] - - 0.00 0.00 0.00 0.01 0.01

Table 1. The expected number of required presses and error rate δ go
up with group size. It is unlikely to require more than 2 presses.

EVALUATING PROLONGED USAGE
In a second study we set out to evaluate an actual deployment
of the button. We installed the wall-mounted prototype in
our lab (hung in an office as shown in Figure 4) and provided
it the names for a group of five users from our lab. Over a
period of 4 weeks, those users would pass by to press the
button every time they got a coffee.

While users in the first study did provide their name before
a button press, this step was left out in this setup. Instead of
providing ground truth before an interaction, we introduced a
disambiguation mechanism in the second study to allow users
a way to correct a wrong recognition. After a user pressed the
button, audio feedback is provided via a text-to-speech engine
(“Thanks <Name>”). If a user is not properly recognized,
she can press the button again within the next 3 seconds to
override that last recognition. Thus ground truth is provided
by the final user-accepted recognition. We allowed cancel-
lation by pressing the button down for at least 3 seconds,
however this was not used at all during the deployment.

At first the button is untrained, i.e., has no recorded samples
for any user. Thus, initially, performance is poor while the
system is collecting samples (and users have to make use of
the disambiguation mechanism by pressing the button again).
We limit the number of training samples to 40 per user. This
provides sufficient data for recognition but also allows the
system to adapt to changing button pressing behavior.
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Figure 7. Over the course of 4 weeks, the number of times users had
to press the button for one interaction (for disambiguation) goes down
and approaches the theoretical minimum of 1. Error bars show 95 %
confidence intervals.

Results
Overall, we logged 372 interactions with the button. We can
see in Figure 7 that the number of required button presses
goes down over time. During the first week, the system is still
learning and users are getting used to it. However, even in that
first week, users on average only need to disambiguate every
third button press. Over the following weeks, the recognition
rate improves and approaches the theoretical minimum of 1.

Overall, we were very pleased with the performance of the
button in our lab setting. In the beginning the system was still
adapting though, but quickly reached acceptable recognition
levels. A confusion matrix for the last two weeks is shown
in Table 2. With low instances of required disambiguation,
using the button was mostly as easy as walking by, pressing
it, and walking away.

Actual\Predicted User 1 User 2 User 3 User 4 User 5

User 1 95.0% 0.0% 0.0% 5.0% 0.0%
User 2 0.0% 100.0% 0.0% 0.0% 0.0%
User 3 0.0% 7.1% 92.9% 0.0% 0.0%
User 4 6.2% 0.0% 3.1% 90.6% 0.0%
User 5 2.8% 0.0% 0.0% 8.3% 88.9%

Table 2. Confusion matrix for last two weeks of the deployment test.

CONCLUSION
We proposed a low-effort user recognition approach that pig-
gybacks on button presses. It links identity information to
button presses and thus integrates recognition and action. The
employed sensors and recognition system are simple enough
to be integrated in commodity buttons, essentially disappear-
ing [25]. Buttons enhanced in this way can serve sources
of context information (as in [16]). The evaluations show
that the prototypes are reliable enough to differentiate be-
tween users in small groups, such as in offices. The approach
minimizes the burden on users.

The button-recognizer concept addresses small cooperating
groups of people who share a resource. Labs, e.g., often have
shared computers for devices such as 3D printers, which could
boot and load user profiles automatically when the power
button is pressed. Similarly, families’ home entertainment
systems could switch profiles and play one’s favorite music
with a single button press.

Large buttons, like conventional light switches, enable quick,
inexact, and inattentive action. They do not require fine motor
skills. Our approach maintains these properties. However,
it also gives users the opportunity to evolve their behavior.
Users may deliberately modify their button-pressing behavior
to communicate additional information or to become more
distinct from others and thus easier to differentiate. Users
could even “teach” their button-pressing behavior to others
(akin to a secret handshake), allowing trusted users to imper-
sonate them.

As for future work it is conceivable to extend this approach
to other objects that users manipulate in their everyday envi-
ronment, such as door handles, window handles, door hinges,
cabinets, etc. User identification for actions on these objects
enables a wide range of application possibilities.



REFERENCES
1. Aumi, T., and Kratz, S. AirAuth: Evaluating In-Air

Hand Gestures for Authentication. Proceedings of the
16th International Conference on Human-Computer
Interaction with Mobile Devices and Services. 2014.

2. Breiman, L. Technical Note: Some Properties of Split-
ting Criteria. Machine Learning, 24(1), July 1996:
41–47.

3. Cieslak, D. A., and Chawla, N. V. Learning Decision
Trees for Unbalanced Data. Proc. PKKD. 2008, 241–
256.

4. De Luca, A., Hang, A., Brudy, F., Lindner, C., and
Hussmann, H. Touch me once and i know it’s you!:
implicit authentication based on touch screen patterns.
Proceedings of the 2012 ACM annual conference
on Human Factors in Computing Systems - CHI ’12.
2012, 987–996.

5. Dix, A. Beyond intention - pushing boundaries
with incidental interaction. Proceedings of Building
Bridges: Interdisciplinary Context-Sensitive Comput-
ing. 2002, 1–6.

6. Harrison, C., Sato, M., and Poupyrev, I. Capacitive
Fingerprinting: Exploring User Differentiation by
Sensing Electrical Properties of the Human Body.
Proceedings of the 25th annual ACM symposium on
User interface software and technology - UIST ’12.
2012, 537–544.

7. Holz, C., and Baudisch, P. Fiberio: A Touchscreen
That Senses Fingerprints. Proceedings of the 26th
annual ACM symposium on User interface software
and technology - UIST ’13. 2013, 41–50.

8. Hudson, S. E., Harrison, C., Harrison, B. L., and
LaMarca, A. Whack Gestures: Inexact and Inattentive
Interaction with Mobile Devices. Proceedings of the
fourth international conference on Tangible, embed-
ded, and embodied interaction - TEI ’10. 2010, 109–
112.

9. Kearns, M., and Ron, D. Algorithmic Stability and
Sanity-Check Bounds for Leave-One-Out Cross-
Validation. Neural Computation, 11(6), Aug. 1999:
1427–1453.

10. Kim, Y., Kim, S., Ha, T., Oakley, I., and Woo, W.
Air-Jet Button Effects in AR. Proc. Lecture Notes in
Computer Science, 384–391.

11. Krause, M. A Behavioral Biometrics Based Authen-
tication Method for MOOCs that is Robust Against
Imitation Attempts. Proceedings of the first ACM
Conference on Learning@Scale. 2014, 201–202.

12. Leggett, J., Williams, G., Usnick, M., and Long-
necker, M. Dynamic identity verification via
keystroke characteristics. International Journal of
Man-Machine Studies, 35(6), Dec. 1991: 859–870.

13. Mock, P., Edelmann, J., Schilling, A., and Rosenstiel,
W. User Identification Using Raw Sensor Data From
Typing on Interactive Displays. Proceedings of the
19th international conference on Intelligent User
Interfaces - IUI ’14. 2014, 67–72.

14. Monrose, F., and Rubin, A. D. Keystroke dynamics
as a biometric for authentication. Future Generation
Computer Systems, 16(4), Feb. 2000: 351–359.

15. Ogihara, A., Matsumura, H., and Shiozaki, A. Bio-
metric Verification Using Keystroke Motion and Key
Press Timing for ATM User Authentication. 2006
International Symposium on Intelligent Signal Pro-
cessing and Communications. Dec. 2006, 223–226.

16. Paradiso, J. A., and Feldmeier, M. A Compact, Wire-
less, Self-Powered Pushbutton Controller. Proceed-
ings of the 3rd International Conference on Ubiqui-
tous Computing - Ubicomp ’01. 2001, 399–304.

17. Peacock, A., and Wilkerson, M. Typing patterns: a
key to user identification. IEEE Security & Privacy
Magazine, 2(5), Sept. 2004: 40–47.

18. Pohl, H., and Murray-Smith, R. Focused and Casual
Interactions: Allowing Users to Vary Their Level of
Engagement. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems - CHI ’13.
2013, 2223–2232.

19. Ramakers, R., Vanacken, D., Luyten, K., Coninx,
K., and Schöning, J. Carpus: A Non-Intrusive User
Identification Technique for Interactive Surfaces.
Proceedings of the 25th annual ACM symposium on
User interface software and technology - UIST ’12.
2012, 35–44.

20. Richter, S., Holz, C., and Baudisch, P. Bootstrapper:
Recognizing Tabletop Users by Their Shoes. Proceed-
ings of the 2012 ACM annual conference on Human
Factors in Computing Systems - CHI ’12. 2012, 1249–
1252.

21. Schmidt, D., Chong, M. K., and Gellersen, H. Hands-
Down: Hand-Contour-Based User Identification for
Interactive Surfaces. Proceedings of the 6th Nordic
Conference on Human-Computer Interaction Extend-
ing Boundaries - NordiCHI ’10. 2010, 432–441.

22. Shi, W., and Yang, J. SenGuard: Passive user identi-
fication on smartphones using multiple sensors. 2011
IEEE 7th International Conference on Wireless and
Mobile Computing, Networking and Communications
- WiMob’11. Oct. 2011, 141–148.

23. Spelmezan, D., Appert, C., Chapuis, O., and Pietriga,
E. Controlling Widgets With One Power-Up Button.
Proceedings of the 26th annual ACM symposium on
User interface software and technology - UIST ’13.
2013, 71–74.

24. Suutala, J., and Röning, J. Methods for person iden-
tification on a pressure-sensitive floor: Experiments
with multiple classifiers and reject option. Informa-
tion Fusion, 9(1), Jan. 2008: 21–40.

25. Weiser, M., and Brown, J. S. The Coming Age of
Calm Technology. In: Beyond Calculation: The
Next Fifty Years of Computing. Vol. 01. July. New
York, NY, USA: Copernicus, 1997, 75–85. ISBN: 0-
38794932-1.

http://dx.doi.org/10.1007/BF00117831
http://dx.doi.org/10.1007/BF00117831
http://dx.doi.org/10.1007/978-3-540-87479-9\_34
http://dx.doi.org/10.1007/978-3-540-87479-9\_34
http://dx.doi.org/10.1145/2207676.2208544
http://dx.doi.org/10.1145/2207676.2208544
http://dx.doi.org/10.1145/2380116.2380183
http://dx.doi.org/10.1145/2380116.2380183
http://dx.doi.org/10.1145/2380116.2380183
http://dx.doi.org/10.1145/2501988.2502021
http://dx.doi.org/10.1145/2501988.2502021
http://dx.doi.org/10.1145/1709886.1709906
http://dx.doi.org/10.1145/1709886.1709906
http://dx.doi.org/10.1162/089976699300016304
http://dx.doi.org/10.1162/089976699300016304
http://dx.doi.org/10.1162/089976699300016304
http://dx.doi.org/10.1007/11941354\_39
http://dx.doi.org/10.1145/2556325.2567881
http://dx.doi.org/10.1145/2556325.2567881
http://dx.doi.org/10.1145/2556325.2567881
http://dx.doi.org/10.1016/S0020-7373(05)80165-8
http://dx.doi.org/10.1016/S0020-7373(05)80165-8
http://dx.doi.org/10.1145/2557500.2557503
http://dx.doi.org/10.1145/2557500.2557503
http://dx.doi.org/10.1016/S0167-739X(99)00059-X
http://dx.doi.org/10.1016/S0167-739X(99)00059-X
http://dx.doi.org/10.1109/ISPACS.2006.364872
http://dx.doi.org/10.1109/ISPACS.2006.364872
http://dx.doi.org/10.1109/ISPACS.2006.364872
http://dx.doi.org/10.1109/MSP.2004.89
http://dx.doi.org/10.1109/MSP.2004.89
http://dx.doi.org/10.1145/2470654.2481307
http://dx.doi.org/10.1145/2470654.2481307
http://dx.doi.org/10.1145/2470654.2481307
http://dx.doi.org/10.1145/2380116.2380123
http://dx.doi.org/10.1145/2380116.2380123
http://dx.doi.org/10.1145/2207676.2208577
http://dx.doi.org/10.1145/2207676.2208577
http://dx.doi.org/10.1145/1868914.1868964
http://dx.doi.org/10.1145/1868914.1868964
http://dx.doi.org/10.1145/1868914.1868964
http://dx.doi.org/10.1109/WiMOB.2011.6085412
http://dx.doi.org/10.1109/WiMOB.2011.6085412
http://dx.doi.org/10.1145/2501988.2502025
http://dx.doi.org/10.1016/j.inffus.2006.11.003
http://dx.doi.org/10.1016/j.inffus.2006.11.003
http://dx.doi.org/10.1016/j.inffus.2006.11.003

	Abstract
	Introduction
	Related Work
	One-Button Recognizer
	Button Prototypes
	Desk Button
	Wall-Mounted Button

	Feature Extraction
	Training the Recognizer

	Evaluating Recognition Performance
	Results

	Evaluating Prolonged Usage
	Results

	Conclusion

