
Body LayARs: A Toolkit for Body-Based Augmented Reality
Henning Pohl
Henning@di.ku.dk

University of Copenhagen
Copenhagen, Denmark

Tor-Salve Dalsgaard
torsalve@di.ku.dk

University of Copenhagen
Copenhagen, Denmark

Vesa Krasniqi
wqm875@alumni.ku.dk

University of Copenhagen
Copenhagen, Denmark

Kasper Hornbæk
kash@di.ku.dk

University of Copenhagen
Copenhagen, Denmark

face tracker
face

emotion
detection

face

pose

emotion
sprite

image

position

show
(optional)

image
image

Current image:

image
image

Current image:

face properties
input

position

name

emotion
operators

input
operator

most confident e

output

switch

expression
case

this.x == 'happy'

case

this.x == 'annoyed'

output

offset position
position

Above

position

Figure 1: Body LayARs is a toolkit for prototyping body-based AR applications. It offers node-based visual programming, but
can also be customized and extended via JavaScript. Applications can be started on connected devices and editedwhile running.
Shown on the right is the output of the application to the left, which tracks faces, detects emotions, and visualizes them as
floating emoji. The output was generated with a photo as input to illustrate future AR device’s fidelity.

ABSTRACT
Technological advances are enabling a new class of augmented
reality (AR) applications that use bodies as substrates for input and
output. In contrast to sensing and augmenting objects, body-based
AR applications track people around the user and layer information
on them. However, prototyping such applications is complex, time-
consuming, and cumbersome, due to a lack of easily accessible
tooling and infrastructure. We present Body LayARs, a toolkit for
fast development of body-based AR prototypes. Instead of directly
programming for a device, Body LayARs provides an extensible
graphical programming environment with a device-independent
runtime abstraction.We focus on face-based experiences for headset
AR, and show how Body LayARs makes a range of body-based AR
applications fast and easy to prototype.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
User interface toolkits;Mobile devices; • Software and its engineer-
ing → Software prototyping.

KEYWORDS
Augmented reality, toolkit, body-based augmentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VRST ’20, November 1–4, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7619-8/20/11. . . $15.00
https://doi.org/10.1145/3385956.3418946

ACM Reference Format:
Henning Pohl, Tor-Salve Dalsgaard, Vesa Krasniqi, and Kasper Hornbæk.
2020. Body LayARs: A Toolkit for Body-Based Augmented Reality. In 26th
ACM Symposium on Virtual Reality Software and Technology (VRST ’20),
November 1–4, 2020, Virtual Event, Canada. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3385956.3418946

1 INTRODUCTION
Augmented reality (AR) promises ubiquitous enhancement of the
world. While this commonly focuses on objects and spaces, AR
also can be used to layer information on people. Consider, for ex-
ample, an AR application that tracks people around you, deter-
mines their emotional state, and shows this information on their
faces. As we start “wearing” AR [39], this technology has the po-
tential to impact interpersonal communication [40] and interaction.
We call this kind of AR “body-based”, and define it as follows:
Body-Based AR is augmented reality that uses bodies as sub-
strate, deriving information from and layering output on the
user themselves and others. Instead of interacting with virtual
objects, the focus is on augmenting interaction with people.

Exploration of body-based AR is hard because of a lack of infras-
tructure [10]. In general, prototyping for AR can be challenging [5]
and this is exacerbated in body-based AR. For example, while there
is mature support in AR tooling for marker tracking, occlusion
detection, and rendering, support for tracking and augmentation of
people is less sophisticated. When building body-based AR applica-
tions, designers and developers could, for example, be interested in
who is around the user, how they behave, or how they move. Track-
ing data can be transformed and aggregated to derive measures,
such as participants’ share of talking time during a meeting or the
path somebody moved along. Subsequently, this data needs to be
visualized, such as with annotations around or overlays on people.

https://doi.org/10.1145/3385956.3418946
https://doi.org/10.1145/3385956.3418946


VRST ’20, November 1–4, 2020, Virtual Event, Canada Henning Pohl, Tor-Salve Dalsgaard, Vesa Krasniqi, and Kasper Hornbæk

With Body LayARs, we present an open-source toolkit that facili-
tates the creation of body-based AR prototypes. Users of the toolkit
get access to tracking information on nearby people and can link it
with outputs to create applications. The web-based visual program-
ming environment enables quick iteration and experimentation, as
well as easy collaboration. We provide a large set of built-in capa-
bilities, but users can also extend the toolkit to add functionality or
target new devices. Development in Body LayARs is device inde-
pendent and allows for quick execution on any connected device
that implements the Body LayARs runtime.

Figure 1 shows an example of Body LayARs in use. The appli-
cation here is meant to support users who have trouble recogniz-
ing facial expressions of emotion (often impaired in persons with
Alzheimer’s disease [17]). With Body LayARs, developers can easily
track faces, get data on the corresponding emotions, and surface this
to the user in a convenient way. In this example, emoji sprites are
used to adorn each tracked person and provide additional emotion
cues to the user.

In summary, our contributions are:
• a description of body-based AR
• a toolkit for easy prototyping of body-based AR apps
• a runtime for the Microsoft HoloLens to run these apps
• a demonstration of the utility and expressiveness of the
toolkit through a set of example applications.

2 DESCRIBING BODY-BASED AR
Historically, AR has been focused on object-based interactions, such
as in gaming, assembly, or training. In contrast, the body has al-
ways played a role in more performative AR experiences1. Julie
Martin’s Dancing in Cyberspace [24] is an early example, where
acrobats interacted on stage with virtual objects. Another example
is DanceSpace [47], where music and graphics are generated based
on dancers’ movements. Yet, such experiences have mostly been
restricted to instrumented rooms (e.g., with multi-camera coverage
for marker tracking). Mobile AR experiences have not generally had
information on bodies. Today, with the development of more power-
ful computer vision methods, bodies are becoming fully available as
material to use in AR. In this section, we describe the technologies
that body-based AR is building on and provide examples of use.

2.1 Recent Advances in Body Tracking
Tracking is a core requirement for AR; in body-based AR, this
means tracking of people. Classic techniques like marker-based
tracking [25] are not suitable for this and thus a different set of
methods is required. In addition to positional tracking, body-based
AR will often also require information on the state, actions, and
identity of others as well as users themselves.

Image-based techniques for detecting faces are mature and have
been extended to full bodies. This spans from detecting the pres-
ence of a single body to full pose tracking of multiple bodies. For
example, the OpenPose project enables pose tracking of any num-
ber of people [7]. Other examples are HoloPose [15], DensePose [4],
VNect [32], PoseNet [35, 36], or SMPL-X [37]. They differ in the
fidelity of the tracked skeleton, whether they provide a 2D or 3D

1See http://www.augmentedperformance.com/ for a sample selection

skeleton, or a full body mesh, and whether they work with one or
more people. Most also provide face tracking.

2.1.1 State. Once bodies are detected, additional properties of
them can be inferred. For example, facial expressions can be derived
from tracked faces. An AR application might detect if a person in
front of the user is smiling, winking, or frowning. Tracking of facial
expressions can also be used to infer the emotional state of others.
A recent survey by Mehta et al. [31] detailed many techniques for
this and demonstrated emotion detection with a HoloLens camera.
Similar to identification, emotion can also be recognized based on
audio features of speech [6].

Another set of properties can be derived from pose data. For
example, such data can be used to determine whether a teacher has
a ‘confident’ stance [43]. Some other possibilities are slouching or
sitting detection, whether somebody is within an area of interest,
or whether two people are sitting close to each other.

2.1.2 Action. Many properties of tracked bodies are time related.
For example, dynamic gestures and movements, such as waving,
nodding, shaking, and their properties, such as walking speed. In-
stead of just detecting movements, recent work also has shown the
prediction of short-term future motions [21, 51].

There is also active research in detection of higher-level actions
from video. For example, HMDB51 [23] and UCF101 [46]—two
common video datasets used for this research—contain actions
such as eating, brushing teeth, or shaking hands. These actions
can already be recognized well from video [26] and, given further
improvements, at some point likely will also work in realtime on
AR devices.

2.1.3 Identity. With tracked bodies, their identity can be important
additional information. An established way to do this is by using
facial data. Face detection and tracking comes built into many
platforms and is fast enough for realtime processing of camera data.
However, people are also identifiable through properties such as
their gait [20], voice [42], and overall look [2].

2.2 Body-Based Output
In body-based AR, bodies should not just be tracked, but it should
also be possible to have output relative to or added to a body. With
pose information, rendering content around a body is straightfor-
ward. For example, instead of rendering a model on top of a tracking
marker, the model could be rendered above a person’s head.

However, body-based AR also brings in new ways to visualize
information in AR. A popular body-based visualization are face
filters (Instagram) and lenses (Snapchat). Both layer visual content
on top of and around faces, such as adding animal ears, fake glasses,
or artificial makeup. These effects can be dynamic and, for example,
also react to head pose and facial expressions. The term ‘filter’ is
also used for image-based effects. For example, the view can be
altered to appear like a film noir, or color graded to be more vivid.
With machine learning methods, more elaborate manipulations
of people’s faces in images have become feasible. An example of
this are generated artificial hair colors [38] and makeup [19]. A
common goal behind such methods is beautification [9, 27].

http://www.augmentedperformance.com/


Body LayARs: A Toolkit for Body-Based Augmented Reality VRST ’20, November 1–4, 2020, Virtual Event, Canada

Table 1: Comparison of common toolkits and SDKs with respect to their suitability for body-based AR prototyping.

Toolkit/API Target Availability Development Body Tracking Body-Based Augmentation§
ARCore Î Ô free compiled code 1 face† n/a
ARKit Î Ô free compiled code 1–3 faces†+ 1 person n/a
Vuforia Î Ô R õ compiled code n/a n/a
Maxst Î Ô R õ compiled code n/a n/a
EasyAR Î Ô À õ compiled code n/a n/a
ARToolKit À free compiled code n/a n/a
Wikitude Î Ô R õ compiled code + GUI n/a n/a
Torch Î Ô õ GUI n/a n/a
ZapWorks Î Ô õ GUI 1 face† face paint
HoloJS R free scripting n/a n/a
MagicScript R free scripting n/a n/a
buildwagon R õ scripting n/a n/a
DeepAR � õ compiled code + GUI 1 face‡ “face filters, lenses, and masks”
Lens Studio �∗ free GUI multiple faces face lenses
Xzimg � õ compiled code faces + emotions n/a
Spark AR �∗ free GUI multiple faces and hands face masks, filters, and “people effects”
Face AR � õ compiled code multiple faces filters, makeup, lenses, beautification
SentiMask � õ compiled code faces + attributes (e.g., age, beard) n/a
visage � õ compiled code faces + attributes (gender, age, emotion) n/a
Makeup AR-tist � õ compiled code faces virtual makeup

∗ For use in instagram/snapchat. Does not allow development of stand-alone applications. † Only works with front camera and hence cannot be used to track others.
‡ Default, multi-face support is only available from company on individual request. §We only consider “out-of-the-box” support. Developers are commonly able to
render custom content. Î = phone,Ô = tablet, R = glasses, and� = library.

2.3 Examples of Existing Body-Based AR
There are a number of existing systems within the space of body-
based AR. A common use of body-based AR is overlays of anatomi-
cal and medical data, such as in physiotherapy education [11, 18].
Similarly, the AnatOnMe system demonstrated how such visualiza-
tion could be used to improve doctor-patient communication [34].
Labella is designed to augment and to promote self-discovery of
the user’s vagina [3].

Instead of anatomical data, the LightGuide system overlays di-
rectional information on the user’s body in order to guide them
through movements [45]. In LumiWatch a graphical user interface
is projected on the user’s arm [49]. Visual output that is linked to
the body is also enabled by the MultiFi system, which extends the
screen space of a user’s wearables [14].

Saquib et al. built a presentation system that allows for flexible
coupling of AR content to bodies and movement [44]. This allows
users to, for example, attach icons to their hand and then gesture
to switch between states. Performances, such as guitar playing, can
also be augmented with spatially coherent visual effects.

Body-basedAR has particular promisewhere it augments human-
human interaction. For example, the LittleHelper system supports
users with autism during job interviews [50]. One component of
this system tracks the face of the interviewer and guides the user
back to it, should they be looking away. Superpower Glass [8] and
Brain Power System [28] also aim to support people with autism.
Both systems are designed for therapy support and share modes
aimed at training emotion recognition. Here the systems detect
the emotional state of a person the user is interacting with. This
information is then either surfaced to the user or used to quiz
them—in either case in order to help them train their own emotion
recognition abilities.

2.4 Developing Body-Based AR Applications
There are many tools available to prototype and develop AR appli-
cations. On top of the general challenges in prototyping AR, this
section shows that the support for body-based AR is scarce.

As noted by Ashtari et al. in a recent paper, the entry barriers for
AR development are high [5]. Domain experts do not commonly
have the skillset to develop AR projects “from scratch.” This can be
especially daunting in the more technical parts of an AR application.
Ashtari et al. cited a participant who remarked that they had no idea
how computer vision works and consider those parts a “black box.”
Unfortunately, this exacerbates the challenges when developing
body-based AR, as face and body tracking commonly is not available
as a component out of the box.

There are several AR prototyping tools aimed at non-developer
audiences. For example, the DART toolkit, was built for design-
ers [29]. Non-programmers were also targeted by Güven and Feiner
withMARS [16]. Recently, there has also been more work on phone-
based AR prototyping. For example, ProtoAR enables creation of
prototypes from sketches and captured clay models [33]. However,
none of these systems offer the capabilities required for body-based
AR.

Table 1 shows an overview of common toolkits for AR devel-
opment as well as of libraries relevant for body-based AR. While
many options exist, none are suitable for fast body-based AR pro-
totyping. For example, many toolkits, such as ARToolKit [25] only
handle tracking of the camera (e.g., with visual markers). While
face tracking now also is a commonly available component, it is
regularly restricted to only the front camera. This allows for selfie
apps, but not for creation of applications that work with the faces
of others.



VRST ’20, November 1–4, 2020, Virtual Event, Canada Henning Pohl, Tor-Salve Dalsgaard, Vesa Krasniqi, and Kasper Hornbæk

For body-based AR, an additional third-party face tracking li-
brary thus would need to be included—something that is difficult for
non-developers. We also see that support for body augmentation is
mostly limited to external libraries as well as the filter editors from
Instagram and Snapchat. Yet, while Instagram’s filter development
tool, Spark AR, for example, does allow for visual programming
(as well as scripting) of face and body effects, these can only be
used in their phone apps. Working with external libraries that bring
in advanced face tracking and augmentation features also comes
at a prize. Instead of fast prototyping in a graphical environment,
tying in these libraries requires writing code and working with the
system on a comparably low level. Hence, there is a gap in the AR
development ecosystem, where no solution allows for fast and easy
prototyping of body-based experiences.

2.5 Motivation for Body LayARs
With BodyLayARs, we address this gap and present an environment
that brings together easy visual programming and body tracking as
well as augmentation. By enabling prototyping with a visual pro-
gramming approach, we cater to domain experts and other people
not trained in software development, as there is evidence that vi-
sual programming can improve the performance of such users [41].
They can quickly assemble systems from a set of building blocks,
yet Body LayARs also allows for extensive scripting and customiza-
tion. Hence, developers with more advanced expertise are able to
leverage it as well. Applications aimed at augmenting interpersonal
interactions benefit especially from headset AR. Hence, prototypes
developed with Body LayARs can be executed on the Microsoft
Hololens (yet are fundamentally device agnostic). Furthermore,
Body LayARs makes information on people available to built-in
components, requiring no inclusion of additional libraries and thus
allowing easy access to these features.

In the remainder of the paper, we describe the design and capa-
bilities of Body LayARs in detail. We also show a range of examples
of simple prototypes that would be complicated or impossible to
built with existing prototyping solutions.

3 THE BODY LAYARS TOOLKIT
As we have described earlier, existing environments for AR devel-
opment do not adequately address the requirements for body-based
AR prototyping. Our Body LayARs toolkit is specifically designed
to address these shortcomings. Specifically, we designed the toolkit
around five goals:

Low barrier of use to enable people without expert knowl-
edge in computer graphics, computer vision, networking,
or machine learning to prototype body-based AR experi-
ences. MacIntyre et al. pointed out that “non-technologists”
find it hard to build prototypes, “due to both their lack of
expertise in areas such as tracking, and to the complicated
software development that would be required” [29]. While
their and other people’s software have made this easier for
AR in general, body-based AR faces similar issues.

Fast iteration to encourage experimentation with minimal
delay between changing a project and seeing that change in
a running application. In addition to compile time costs, AR

prototyping commonly requires an additional deployment
step to the target device.

Device independence to enable project development compat-
ible with several different AR devices. The AR landscape is
changing rapidly which, as Ashtari et al. noted, “can make
end-user developers feel especially left behind and struggle
to keep up” [5]. An abstraction from specific hardware can
help reduce the complexity users have to deal with.

Collaboration to allow multiple people to work on a proto-
type at the same time. Collaborative coding tools, such as
Collabode [13], have shown the potential of this approach.

Extensibility to allow users to add functionality and share
it with others. This is a common goals shared with many
other toolkits, and AR prototyping—with a diverse device
landscape—can particularly benefit from this.

3.1 Considerations
To achieve fast iteration times and low entry barriers, we opted
for a web-based solution where projects are deployed to a host
application already running on a target device. Similarly to HoloJS
or buildwagon, this eliminates the need for users to have a compiler
toolchain installed for the target device. Furthermore, deployment
of projects to the target device becomes faster as no restart of the
application is needed if projects are executed inside a host applica-
tion. A browser-based editor also enables easier collaboration with
project and code sharing, as well as simultaneous editing.

To further make development device-agnostic, we decided to
develop most of Body LayARs in JavaScript and only have a small
API to actual devices. Devices then only need to implement a small
set of functions (e.g., rendering a model, returning the current user
position, finding faces in the scene) to be able to run Body LayARs
applications. Using JavaScript for the majority of the code also
makes it easier to customize and extend Body LayARs.

3.2 Overview
Users work with the Body LayARs toolkit (see Figure 2 for a con-
ceptual overview) via a web application. The application server
holds all project files and enables project management, versioning,
editing, and sharing. Prototype development primarily happens
within a visual programming editor. In addition to the visual flow-
based editing, users can also write JavaScript inside scripting nodes.
Assets (such as 3d models or audio files) can be uploaded and then
used within a project.

While development happens inside the web application, projects
run on AR devices or in a standalone desktop application. In either
case, after starting the Body LayARs application on a device, it
automatically registers with the webserver. Users can see currently
connected devices and their status at the bottom of the project
editor. Once ready to test a project, users only need to click on one
of the available devices to run their project on it.

To run a project, the webserver transforms the flow-based repre-
sentation of the project into a JavaScript application package. Each
node is translated into a corresponding JavaScript object and the
resulting node graph linearized. Assets are stored on the server,
and then referenced from the application package so applications



Body LayARs: A Toolkit for Body-Based Augmented Reality VRST ’20, November 1–4, 2020, Virtual Event, Canada

Application ( JavaScript + Assets)

Body LayARs JavaScript API
⯆

Microsoft HoloLens
C# implementation of API

⯆
Other AR Devices

Implementation of API

⯆
...

function update(ctx) {

  var face = Face.getCurrent();

  if(face.isVisible) {

    seenFaces[face.id]++;

  }

  if(face.isSmiling) {

    mood = (mood + 1) / 0.5;

  }

}

Body-LayARs User Interface

JavaScript CodeVisual Programming
⯆

⮂

Figure 2:With Body LayARs, users built apps in a visual pro-
gramming environment running in their browser. For execu-
tion, projects are transformed into JavaScript and send to a
connected device. The same project can run on different de-
vices as the Body LayARs API provides an abstraction layer.

can fetch them later. When starting a project, the host application
on the selected device receives this package and runs the contained
project. During execution, host devices are asked to call an update
function of the packaged application every time a frame is rendered.
While an application is executing, users can still make changes in
the editor and update the application state. For example, they can
change the color of a label that is being shown at runtime.

Because of the differences between AR devices, each device cur-
rently requires its own implementation of the host application. For
example, there are different SDKs for the Microsoft HoloLens and
the Magic Leap. While environments like Unity or the Unreal En-
gine provide some abstraction, there remain some fundamental
architectural differences (such as the HoloLens only running UWP
applications). We envision that the future OpenXR standard will
soon enable more device-agnostic development.

We built host applications for the Microsoft HoloLens as well as
for the Windows desktop. The latter allows for convenient proto-
typing but is limited in its capabilities due to running on a desktop.
However, both implement the full Body LayARs JavaScript API and
thus can run the same application bundles.

All parts of Body LayARs are open source2. We hope that this
will result in further development of and interest in body-based
AR. We are especially keen on widening access to experimentation
with body-based AR from AR experts to a broader audience.

3.3 Project Server and Editor
The server contains all projects and offers management, editing,
and deployment capabilities. This approach allows users to work
on their body-based AR projects without setting up a development
environment on their own machine. Instead of requiring a powerful
development setup, they can work on any device with a browser.

Figure 3 shows the project editor in action. Users can instantiate
nodes from a categorized drawer on the left. They can freely move
nodes on the main canvas and drag between node attributes to con-
nect them. The canvas can be panned and zoomed, which enables
working with larger node layouts than fit on one screen.

2Available at https://github.com/henningpohl/body-based-ar-tk.

Run projects on connected devices

Available nodes 
organized into 
categories

Drag from endpoints 
to connect nodes

Access to 
templates 
created by 
others

Figure 3: The web-based Body LayARs editor enables users
to build applications by connecting nodes. Devices also con-
nect to the editor, and users can run their applications on a
connected device by selecting it from the device list. Once a
project is running, users can continue to make changes to
nodes, which propagate to the executing device.

Apart from connecting nodes, some nodes offer additional em-
bedded functionality. For example, some allow for asset upload and
storage, while others can be configured into different modes. Node
inputs and outputs are typed (shown in color coding) to only allow
suitable connections. However, there is some flexibility and there
are nodes that accept input of a range of types. Where possible,
connection points change their type as nodes are configured or
inputs are set. Node connections can pass single items, but also
multiple instances (e.g., when multiple faces are detected). This
simplifies connecting nodes as users do not need to handle each
instance separately.

The editor also shows a list of connected devices and allows
users to start execution of the current project on any of them that
are idle. Web server, devices, and browsers are all connected via a
WebSocket communication layer build with socket.io3. This enables
users to send execution commands to devices, but also to share
node updates. Hence, while a Body LayARs application is already
running, it can still be changed. However, when changes alter the
structure of an application (e.g., when deleting nodes), device and
editor desynchronize. In this case, the application continues running
on the device, but will no longer update with changes from the
editor.

3.3.1 Available Nodes. We provide nodes for body-specific func-
tionality as well as more general processing, debugging, and output
capabilities. Examples of the former are the face tracker and pose
tracker nodes. These provide the capability to receive a list of faces
and poses visible to the device respectively. The output from these
nodes can be routed through additional nodes to further augment
the data. For example, a face can be given to a face recognizer
node to retrieve a name for that face.
3https://socket.io/

https://github.com/henningpohl/body-based-ar-tk
https://socket.io/


VRST ’20, November 1–4, 2020, Virtual Event, Canada Henning Pohl, Tor-Salve Dalsgaard, Vesa Krasniqi, and Kasper Hornbæk

General flow control is available through nodes like filter, con-
ditional, or loop. For example, the filter node can be used to
reduce a bundle of all detected faces to only the closest one. The
conditional node works similarly, but also allows for branching
to, for example, show different outputs depending on a currently
visible face. For more complex logic or data handling, we provide
the script node, that allows users to embed arbitrary JavaScript
code into their application.We describe this node in the next section
on customizing and extending Body LayARs.

Users can use a set of output nodes to show the results of their
applications. A basic example is the sound node which plays back
a sample when triggered. With a label node, floating text can be
shown anchored within the scene, while the sprite and model
nodes do the same but with a sprite and full model respectively.
While the anchor used can be static it can also be dynamically tied
to a tracked scene feature, such as a person’s head. For display of
movement data we provide a path node, while a bargraph node
can be used to put a corresponding visualization into the world.

Finally, we also provide two kinds of debugging nodes. The app
debug node enables textual output to an overlay inside a device.
On the other side, the graph debug node only surfaces debug
information inside the project editor.

3.3.2 Customizing, Extending, and Sharing. Users can modify Body
LayARs in multiple ways. First, the script node can be used for
operations not supported by the visual programming environment.
For example, users could use it to keep a face history (e.g., to trigger
output based on when a person was last seen). In a script node, any
standard JavaScript language feature and type can be used. We also
provide a few custom types specific to AR, such as color, vector,
matrix, face, and pose. Additionally, user scripts can make calls
to the underlying Body LayARs JavaScript API (see below).

Second, node groups in a project can be shared by saving them as
a named building block. These blocks are available to all other users
in an extra menu at the bottom of the node drawer. This makes it
easy to share common node combinations but also to share custom
logic in script nodes.

Third, all nodes are editable on the server. Nodes consist of at
least an interface definition in JSON format and runtime JavaScript
code. By editing a node’s interface, users can add, change, or remove
connection points available on that node. For example, they might
want to add an input to the face recognizer node to be able to
activate or deactivate it at runtime. Changes to the runtime code
get deployed to devices and can substantially alter the behavior of
a node.

More complex nodes also have custom styling and code for the
editor. For example, the color node contains a color picker that
shows up when the color value is selected. This is also editable by
users so they can make improvements to existing widgets as well
as add new ones.

Finally, users are able to apply the node editing capabilities to
create entirely new nodes from scratch or based on existing nodes.
In this way large changes to Body LayARs are possible. Users might
want to create a new node from a script they have used or to
make a common design easier to build. As with built-in nodes, how
these new nodes show up and behave in the editor is also fully
customizable.

Nodes on a project server are shared with all users. Changes
made by one automatically manifest in everybody’s projects. Simi-
larly, if one user adds a new node or saves a building block, this is
also available to all. We opted for this open design as we assume
collaborating users working on prototypes. For this scenario, we
value flexibility and collaboration higher than stability.

3.4 Body LayARs JavaScript API
While all application logic is handled via nodes and scripts, these
have no way of reading inputs or effecting any outputs on their own.
To interface the application logic with actual devices, we provide
an API layer. The API is designed to be stateful and to mostly
work asynchronously. Sounds, models, and labels are identified by
handles that are passed to the API. This does not expose the actual
objects to the runtime and allows devices to implement the API
in a way that suits them most. Any input is received by callback
functions that are registered for events, such as user movement
or face tracking. In addition to device capabilities, it also provides
access to state, such as the current time or frame number.

In addition to the Body LayARs API, host applications are also
required to provide two extensions to the JavaScript runtime: (1)
logging, and (2) networking. For logging, a console.log function
needs to be available. This is an especially useful functionality
when debugging applications in IDEs. For networking, we require
implementations to provide theXMLHttpReqestAPI. This allows
users to move networking code from the browser directly to Body
LayARs. Prototypes can use this functionality to make requests to
servers to, for example, fetch additional resources at runtime or to
save tracking data online.

3.5 Host Applications
Applications written with Body LayARs are not directly executable
on a device. Instead, they require a host application to be written
for each device that can then run the packaged JavaScript bundle.
An important requirement is hence that such applications need
to be able to interface with JavaScript code. However, JavaScript
engines are available for all relevant platforms for integration into
applications. Hence, enabling running of Body LayARs application
boils down to implementing the about 20 functions that form the
JavaScript API.

We built an example host application for the Microsoft HoloLens,
which we describe in this section.We chose to focus on AR headsets,
in particular the HoloLens, as body-based AR experiences especially
benefit from hands-free and see-through kinds of AR. Having to
hold a phone in front of themwould make testing of many scenarios
(e.g., augmenting conversation) awkward and unnatural. However,
note that the HoloLens also is not ideal for this purpose and does
inhibit eye contact between participants.

We also compile a variant of the application that instead of on
the HoloLens runs in a local window (enabling faster local testing).
It shares all the Body LayARs relevant code with the HoloLens
version and hence we will not describe it here.

3.5.1 Microsoft HoloLens. We built our host application for the
HoloLens around the UrhoSharp engine. This provides a graphics
layer abstraction, asset loading, an audio system, as well as integra-
tion of the HoloLens tracking. To run Body LayARs applications,



Body LayARs: A Toolkit for Body-Based Augmented Reality VRST ’20, November 1–4, 2020, Virtual Event, Canada

we embedded the ChakraCore JavaScript engine. The application
itself is small and primarily translates calls to the Body LayARs
JavaScript API into UrhoSharp calls. For example, when a model
is loaded, the resource is fetched from the project server and just
added to the engine’s resource cache.

While the HoloLens is fast enough to run all logic and rendering
locally, some operations require additional processing capabilities.
For example, while we run face tracking on the HoloLens directly,
this was not feasible for the more advanced person-centered detec-
tion and tracking. We hence offload this work to an external server.
Correspondingly, these parts of Body LayARs are device-agnostic
and other devices could make use of this.

3.5.2 Remote Services. Our external server provides services for
face recognition, emotion classification, and pose tracking. As we
run face detection locally, we only need to involve this server if (1)
people are present, and (2) face or emotion recognition are actually
required. For pose recognition we always need to send whole video
frames to the server. We use PoseNet [48] for pose recognition, the
Face Recognition library [12] for face recognition, and FER [30] for
facial expression recognition, which we use to classify emotional
state.

More advanced detection, tracking, and recognition is available,
however we chose a set of models that still allowed us for close
to realtime (we do not run the models on every frame from the
HoloLens camera) execution. Furthermore, a limitation of the mod-
els we used is that they only provide 2D results. Hence, while we
estimate the depth of recognized faces and joints, this is less ac-
curate than full 3D model fitting. We will return to this and other
limitations below.

3.6 Comparison to Other AR Tools
As we have described earlier, current AR development environ-
ments (see Table 1) do not adequately support prototyping of body-
based AR. While there are some toolkits that allow for easy proto-
typing with an editor, such as Wikitude Studio or Torch, these do
not track bodies. Google’s ARCore and Apple’s ARKit both support
some tracking of faces and poses. However, this only works with the
front facing camera of phones and tablets, prohibiting prototyping
of applications that augment interaction with others—a core aspect
of body-based AR—as well as immersive experiences. Similarly,
while Spark AR enables building of some body-based experiences,
it can only be used for filters running inside of the instagram phone
app.

Body LayARs is similar to Micosoft’s HoloJS and Magic Leap’s
MagicScript, in that all three are built on top of a JavaScript stack,
which enables faster prototyping. Our visual programming envi-
ronment is a further abstraction on top of this. Furthermore, HoloJS
and MagicScript both are comparatively low-level and, for example,
require developers to program in WebGL for graphics. Like Body
LayARs, HoloJS applications can also be deployed quickly to an app
running on a target device with Spin.

Table 1 also showed several libraries that can be used to add
similar functionality as in Body LayARs to applications. However,
all these are costly and require expertise in software development.

face tracker
face

face recognizer
face

face with name

face properties
input

position

name

label
string

position

color

show
(optional)color

#41bcdbff

Figure 4: In this example, Body LayARs is used to detect and
recognize people and then display nametags on top of them.

4 EXAMPLE PROJECTS
To show how Body LayARs enables easy development of body-
based AR prototypes we have created a set of example applications.
We have aimed to (1) cover a range of use cases, and (2) demon-
strate the development capabilities provided by Body LayARs. For
each of these examples, we show the corresponding Body LayARs
application as well as captures of these applications running on
the HoloLens. Note that we have reduced the fidelity Body LayARs
nodes are shown at in the corresponding figures to make them
more readable.

4.1 Placing Nametags on Recognized People
The first example application demonstrates a basic use of Body
LayARs. To help people remember names, this application attaches
nametags to them. As shown in Figure 4, this application only
requires a few nodes, primarily: (1) a face tracker node to find
faces in front of the user, (2) a face recognizer node to associate
a name with each face, and (3) a label node that places the name
next to each face.

This application could be extended in many ways. For exam-
ple, additional information for each recognized person could be
retrieved from a web service with a script node. The label could
then show a combination of name and position, or name and last
time that person was met.

4.2 Tracking Student Responses in Classrooms
Our second example application prototypes an application for teach-
ers and instructors, working in classrooms. When one-on-one en-
gagement is not feasible, they commonly just put problems before
the students and ask them to vote on potential answers. While there
is tooling support for this activity, it usually requires students to
vote on a website using their laptop or mobile, instead of directly
responding to the instructor. Traditionally, students could also just
raise their hand to show their agreement with an answer.



VRST ’20, November 1–4, 2020, Virtual Event, Canada Henning Pohl, Tor-Salve Dalsgaard, Vesa Krasniqi, and Kasper Hornbæk

pose tracker
pose

pose detection
input

hand not raised

output

pose detection
input

hand raised

output

array operations
input

operator

count elements

output

array operations
input

operator

count elements

output

formatted string
string format

yay (%d)

argument

output

formatted string
string format

nay (%d)

argument

output

merge
input

input

output

ahead
meters

position

number

1.5

bargraph
labels

values

colors

graph
position

merge
input

input

output

color

#258236ff

#7b052fff

Figure 5: The project shown here tracks people’s poses and determines how many raised their hand and how many did not.
This is combined with some color coding and labels to create a bar chart visualizing the result of this show of hands.

myself
position

forward

up

right

script
input variable name

pos

 setup function 
this.path = [];
this.min_segment_dist = 0.2;
this.offset = new Position(0, -1, 0);

 loop function 
if(!this.hasValue('pos')) {
  return;
}
let pos = this.getValue('pos');
let last = this.path[this.path.len
if(last !== undefined && last.dist
  return;
} else {
  this.path.push(pos.add(this.offs
  this.setOutput(this.path);
}

output

1
2
3

1
2
3
4
5
6
7
8
9
10
11

path render
points

path color

color

#95170cff

Figure 6: This projects shows how a script node can be used
to aggregate incoming data into more complex structures.
Here, a path is assembled from the movement data of the
user and shown in the world.

timer
interval

(seconds)

active
(optional)

trigger

number

2

face tracker
face

face properties
input

position

name

playSound
trigger

position
(optional)

Figure 7: In this project, every two seconds a sound is played
at the location of every person around the user.

However, keeping track of students and getting a decent tally of
the room can be challenging, especially in large rooms and small
differences in voting behavior. Yet, where it is hard for people to
keep track of a large number of people, this is not the case for
computers. Figure 5 shows a Body LayARs prototype that works
with a small group of people. Their poses are tracked and then the
instances where the hands are raised or lowered are counted up
respectively. These counts are then visualized in a bar graph—color
coded and labeled.

4.3 Emotion Annotation
Our third example shows how body-based AR can help users to
better notice the emotional state of people around them. For people
that have trouble reading faces, this can be a conversational aid, but
it could also be seen as a form of expression. In the project shown in
Figure 8, a face tracker works in combination with an emotion
detector to infer emotional state from faces in view of the user.
Here, we are only interested in sad faces, which we detect with
a string comparison against the dominant detected emotion. If a
person is found to be sad, a model is added to hover just above their
face. In this case, the project includes the model of a cartoon-like
cloud that is colored in a dark gray.

4.4 Visualizing Self-Tracking Data
The earlier examples all demonstrate prototypes that work with
other people. To show that Body LayARs can also be used to work
with one’s own body and movements we included this fourth ex-
ample (shown in Figure 6). This application aggregates the user’s
movement through space and visualizes it using a path.

The example shows the most reduced instance of self tracking
and we can envision multiple ways this can be extended to proto-
type more intricate applications. Instead of showing movement as
a path, the aggregating function could instead discretize location
data and build a spatial heatmap for a room.

4.5 Sonification
Finally, with our fifth example we demonstrate that Body LayARs
can also be used to build non-visual applications. The project shown
in Figure 7 again tracks people around the user, but this time uses
the positional information to anchors sounds in the scene. Every
two seconds the sounds effect are triggered.

Instead of playing sound samples, this could be extended by
recognizing people and then speaking out their names with a speak
text node. With an additional script, it could be detected when
a person first appears and instead of continuously sounding out
their names, they would only be announced once. While emotion
can also be gleaned from voice, additional sonification of visual
information could aid blind people in conversations.



Body LayARs: A Toolkit for Body-Based Augmented Reality VRST ’20, November 1–4, 2020, Virtual Event, Canada

face tracker
face

emotion detection
face

pose

emotion

face properties
input

position

name

emotion operators
input

operator

most confident emoti

output

hover position
position

position

string

Sad

compare
input one

input two
operator

==

result

3D Model
position

color


orientation

(optional)

scale (optional)

show
(optional)

number

0.1

color

#404647ff

Figure 8: In this example people’s emotions are inferred and a dark cloud is rendered above people found to be sad.

5 LIMITATIONS
Body LayARs has a number of limitations on the editor and runtime
side as well as in the HoloLens application. While the editor and
runtime allow for extension and customization, the set of nodes
available out of the box is still limited. We believe that the set we
provide allows for an interesting set of initial explorations, but for
more complex kinds of prototypes likely will need to be extended.

Use of JavaScript allows for faster iteration (nothing needs to
be compiled) and broad accessibility. However, the lack of static
typing also means that runtime behavior of prototypes can be more
fragile. Once it has become clearer what kind of functionality is
required and which features are superfluous for body-based AR, it
would be sensible to put more constraints on the development.

We have already mentioned above that the tracking capabilities
on the device are currently limited. This is to strike a balance be-
tween the desire for realtime performance and the fidelity of track-
ing. For example, more advanced face tracking on the HoloLens is
possible (as demonstrated by the HoloFace project [22]), yet comes
at additional computational cost. As we do not have full 3d data
available on tracked faces and bodies, some augmentation can be
expressed in Body LayARs, yet not rendered by the HoloLens ap-
plication. For example, the API allows users to specify that they
would like to add an eye shadow to a tracked face, yet this is not
currently rendered. A host application for future, more powerful,
AR headsets could then enable this kind of augmentation.

While Body LayARs supports playback of spatial audio, the audio
functionality in general is comparably limited. For example, in
addition to tracking people around oneself using cameras, it should
also be possible to do the same with microphones. Yet, while some
headsets come with microphone arrays built-in, we have found
access to these to be too restricted. Hence, Body LayARs currently
does not include any capability for using audio as an input.

In Body LayARs we currently also do not address the privacy
issues that body-based AR is fraught with. As shown by Acquisti et
al., face recognition in anAR context can easily be abused [1]. Hence,
while body-based AR can be beneficial for users (e.g., by aiding them
in social situations), the cost of it can be felt more by other people.
Social acceptability will depend on negotiating a balance between
privacy and utility. As Body LayARs is a prototyping tool, we took
a non-restrictive approach. However, we do limit all recognition to
people who are explicitly added to the system.

6 CONCLUSION
Advances in computer vision are enabling a new kind of AR ex-
perience: body-based AR, where the augmentation is focused on
adding to interaction with people. Prototyping this kind of AR ex-
perience, however, is currently complicated, effectively limiting
who can explore the space of body-based AR. To alleviate this issue,
we have presented the open source Body LayARs toolkit, which
enables users to rapidly prototype body-based AR experiences.

Body LayARs provides a graphical flow-based programming
environment, but also allows users to deeply customize and extend
the toolkit.Where the graphical programming is not sufficient, users
can integrated chunks of JavaScript directly or use JavaScript to
write entirely new components. With a set of example applications,
we have shown that Body LayARs enables easy augmentation of
interactions based on identity, emotional state, and movement of
oneself and others. We have kept these simple but have outlined
throughout the paper how the capabilities of Body LayARs can
support more complex developments. For example, as networking is
available, users can tie body-based AR prototypes to more powerful
web backends. And as a full JavaScript engine forms the underlying
execution environment, users are free to pull in any of the plethora
of JavaScript modules available from others.

We believe that body-based AR offers exciting possibilities. With
Body LayARs many experiences can be prototyped today. But on-
going development in the underlying technologies will open up
more possibilities in the future. In particular, we can expect full 3d
face and pose tracking to mature and for AR devices to incorporate
hardware for faster execution of neural network models. A benefit
of developing with Body LayARs is that, because these applications
build on higher level abstractions, improvements in the underlying
tracking will directly benefit existing projects. Furthermore, these
technological advances will enable more complex applications, such
as visually augmenting other’s bodies in realtime or tracking larger
groups (such as in classrooms).

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement 648785).



VRST ’20, November 1–4, 2020, Virtual Event, Canada Henning Pohl, Tor-Salve Dalsgaard, Vesa Krasniqi, and Kasper Hornbæk

REFERENCES
[1] Alessandro Acquisti, Ralph Gross, and Fred Stutzman. 2014. Face Recognition and

Privacy in the Age of Augmented Reality. Journal of Privacy and Confidentiality
6, 2 (2014), 1.

[2] Ejaz Ahmed, Michael Jones, and Tim K. Marks. 2015. An Improved Deep Learning
Architecture for Person Re-Identification. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[3] Teresa Almeida, Rob Comber, Gavin Wood, Dean Saraf, and Madeline Balaam.
2016. On Looking at the Vagina Through Labella. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (San Jose, California, USA)
(CHI ’16). ACM, New York, NY, USA, 1810–1821. https://doi.org/10.1145/2858036.
2858119

[4] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. 2018. DensePose: Dense
Human Pose Estimation in the Wild. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[5] Narges Ashtari, Andrea Bunt, JoannaMcGrenere, Michael Nebeling, and Parmit K.
Chilana. 2020. Creating Augmented and Virtual Reality Applications: Current
Practices, Challenges, andOpportunities. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (CHI ’20). Association for Computing
Machinery, New York, NY, USA, Article 593, 13 pages.

[6] Moataz El Ayadi, Mohamed S. Kamel, and Fakhri Karray. 2011. Survey on speech
emotion recognition: Features, classification schemes, and databases. Pattern
Recognition 44, 3 (2011), 572 – 587. https://doi.org/10.1016/j.patcog.2010.09.020

[7] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2018.
OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields.
In arXiv preprint arXiv:1812.08008.

[8] Jena Daniels, Jessey N. Schwartz, Catalin Voss, Nick Haber, Azar Fazel, Aaron
Kline, Peter Washington, Carl Feinstein, Terry Winograd, and Dennis P. Wall.
2018. Exploratory study examining the at-home feasibility of a wearable tool
for social-affective learning in children with autism. npj Digital Med 1 (2018),
32:1–32:10. https://doi.org/10.1038/s41746-018-0035-3

[9] Nir Diamant, Dean Zadok, Chaim Baskin, Eli Schwartz, and Alex M. Bronstein.
2019. Beholder-Gan: Generation and Beautification of Facial Images with Condi-
tioning on Their Beauty Level. In 2019 IEEE International Conference on Image
Processing (ICIP). 739–743. https://doi.org/10.1109/ICIP.2019.8803807

[10] W. Keith Edwards, Mark W. Newman, and Erika Shehan Poole. 2010. The In-
frastructure Problem in HCI. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). ACM, New York,
NY, USA, 423–432. https://doi.org/10.1145/1753326.1753390

[11] Hasan Shahid Ferdous, Thuong Hoang, Zaher Joukhadar, Martin N. Reinoso,
Frank Vetere, David Kelly, and Louisa Remedios. 2019. “What’s Happening at
That Hip?”: Evaluating an On-body Projection Based Augmented Reality System
for Physiotherapy Classroom. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York,
NY, USA, Article 234, 12 pages. https://doi.org/10.1145/3290605.3300464

[12] Adam Geitgey. 2019. Face Recognition. Retrieved 19-Sep-2019 from https:
//github.com/ageitgey/face_recognition

[13] Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-Time Collaborative
Coding in a Web IDE. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11).
Association for Computing Machinery, New York, NY, USA, 155–164. https:
//doi.org/10.1145/2047196.2047215

[14] Jens Grubert, Matthias Heinisch, Aaron Quigley, and Dieter Schmalstieg. 2015.
MultiFi: Multi Fidelity Interaction with Displays On and Around the Body. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). ACM, NewYork, NY, USA, 3933–3942.
https://doi.org/10.1145/2702123.2702331

[15] Riza Alp Güler and Iasonas Kokkinos. 2019. HoloPose: Holistic 3D Human
Reconstruction In-The-Wild. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[16] Sinem Güven and Steven Feiner. 2003. A hypermedia authoring tool for
augmented and virtual reality. New Review of Hypermedia and Multi-
media 9, 1 (2003), 89–116. https://doi.org/10.1080/13614560410001725329
arXiv:https://doi.org/10.1080/13614560410001725329

[17] Rita Hargrave, Richard J. Maddock, and Valerie Stone. 2002. Impaired Recog-
nition of Facial Expressions of Emotion in Alzheimer’s Disease. The Jour-
nal of Neuropsychiatry and Clinical Neurosciences 14, 1 (2002), 64–71. https:
//doi.org/10.1176/jnp.14.1.64 PMID: 11884657.

[18] Thuong Hoang, Martin Reinoso, Zaher Joukhadar, Frank Vetere, and David Kelly.
2017. Augmented Studio: Projection Mapping on Moving Body for Physiother-
apy Education. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM, New York, NY, USA,
1419–1430. https://doi.org/10.1145/3025453.3025860

[19] Xin Jin, Rui Han, Ning Ning, Xiaodong Li, and Xiaokun Zhang. 2019. Facial
Makeup Transfer Combining Illumination Transfer. IEEE Access 7 (2019), 80928–
80936. https://doi.org/10.1109/ACCESS.2019.2923116

[20] Amit Kale, Aravind Sundaresan, A. N. Rajagopalan, Naresh P. Cuntoor, Amit K.
Roy-Chowdhury, Volker Krüger, and Rama Chellappa. 2004. Identification of
Humans Using Gait. IEEE Transactions on Image Processing 13, 9 (Sep. 2004),
1163–1173. https://doi.org/10.1109/TIP.2004.832865

[21] Angjoo Kanazawa, Jason Y. Zhang, Panna Felsen, and Jitendra Malik. 2019. Learn-
ing 3D Human Dynamics from Video. In Computer Vision and Pattern Recognition
(CVPR).

[22] Marek Kowalski, Zbigniew Nasarzewski, Grzegorz Galinski, and Piotr Garbat.
2018. HoloFace: Augmenting Human-to-Human Interactions on HoloLens. In
2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 141–149.
https://doi.org/10.1109/WACV.2018.00022

[23] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. 2011. HMDB: A Large
Video Database for HumanMotion Recognition. In Proceedings of the International
Conference on Computer Vision (ICCV).

[24] European Theater Lab. 2017. The history of augmented reality and how
theatre may benefit from it. Retrieved 25-Aug-2019 from https://www.
europeantheatrelab.eu/history-augmented-reality-theatre-may-benefit/

[25] Philip Lamb. 2004. ARToolKit. Retrieved 25-Aug-2019 from http://www.hitl.
washington.edu/artoolkit/

[26] Zhenzhong Lan, Yi Zhu, Alexander G. Hauptmann, and Shawn Newsam. 2017.
Deep Local Video Feature for Action Recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops.

[27] Ji Liu, Shuai Li, Wenfeng Song, Liang Liu, Hong Qin, and Aimin Hao. 2018. Au-
tomatic Beautification for Group-Photo Facial Expressions Using Novel Bayesian
GANs. InArtificial Neural Networks andMachine Learning – ICANN 2018. Springer
International Publishing, 760–770.

[28] Runpeng Liu, Joseph P. Salisbury, Arshya Vahabzadeh, and Ned T. Sahin. 2017.
Feasibility of an Autism-Focused Augmented Reality Smartglasses System for
Social Communication and Behavioral Coaching. Frontiers in Pediatrics 5 (2017),
145:1–145:8. https://doi.org/10.3389/fped.2017.00145

[29] Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay David Bolter. 2004. DART:
A Toolkit for Rapid Design Exploration of Augmented Reality Experiences. In
Proceedings of the 17th Annual ACM Symposium on User Interface Software and
Technology (Santa Fe, NM, USA) (UIST ’04). ACM, New York, NY, USA, 197–206.
https://doi.org/10.1145/1029632.1029669

[30] Mayur Madnani. 2018. FER — Facial Expression Recognition. Retrieved 20-Sep-
2019 from https://github.com/mayurmadnani/fer

[31] Dhwani Mehta, Mohammad Faridul Haque Siddiqui, and Ahmad Y. Javaid. 2018.
Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed
Reality. Sensors 18, 2 (2018). https://doi.org/10.3390/s18020416

[32] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mo-
hammad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian
Theobalt. 2017. VNect: Real-time 3D Human Pose Estimation with a Single RGB
Camera. ACM Transactions on Graphics 36, 4, 14. https://doi.org/10.1145/3072959.
3073596

[33] Michael Nebeling, Janet Nebeling, Ao Yu, and Rob Rumble. 2018. ProtoAR:
Rapid Physical-Digital Prototyping of Mobile Augmented Reality Applications.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173927

[34] Tao Ni, Amy K. Karlson, and Daniel Wigdor. 2011. AnatOnMe: Facilitating
Doctor-patient Communication Using a Projection-based Handheld Device. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Vancouver, BC, Canada) (CHI ’11). ACM, New York, NY, USA, 3333–3342. https:
//doi.org/10.1145/1978942.1979437

[35] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan
Tompson, and Kevin Murphy. 2018. PersonLab: Person Pose Estimation and
Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding
Model. In The European Conference on Computer Vision (ECCV).

[36] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan
Tompson, Chris Bregler, and Kevin Murphy. 2017. Towards Accurate Multi-
Person Pose Estimation in the Wild. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[37] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed
A. A. Osman, Dimitrios Tzionas, and Michael J. Black. 2019. Expressive Body
Capture: 3D Hands, Face, and Body from a Single Image. In Proceedings IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[38] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and Jose M. Álvarez.
2016. Invertible Conditional GANs for image editing. arXiv:1611.06355 [cs.CV]

[39] Ken Perlin. 2015. Eccescopy: To look, is to see. XRDS 22, 1 (Nov. 2015), 36–39.
https://doi.org/10.1145/2810052

[40] Ken Perlin. 2016. Future Reality: How Emerging Technologies Will Change
Language Itself. IEEE Computer Graphics and Applications 36, 3 (May 2016),
84–89. https://doi.org/10.1109/MCG.2016.56

[41] Thomas W. Price and Tiffany Barnes. 2015. Comparing Textual and Block In-
terfaces in a Novice Programming Environment. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research

https://doi.org/10.1145/2858036.2858119
https://doi.org/10.1145/2858036.2858119
https://doi.org/10.1016/j.patcog.2010.09.020
https://doi.org/10.1038/s41746-018-0035-3
https://doi.org/10.1109/ICIP.2019.8803807
https://doi.org/10.1145/1753326.1753390
https://doi.org/10.1145/3290605.3300464
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/2702123.2702331
https://doi.org/10.1080/13614560410001725329
http://arxiv.org/abs/https://doi.org/10.1080/13614560410001725329
https://doi.org/10.1176/jnp.14.1.64
https://doi.org/10.1176/jnp.14.1.64
https://doi.org/10.1145/3025453.3025860
https://doi.org/10.1109/ACCESS.2019.2923116
https://doi.org/10.1109/TIP.2004.832865
https://doi.org/10.1109/WACV.2018.00022
https://www.europeantheatrelab.eu/history-augmented-reality-theatre-may-benefit/
https://www.europeantheatrelab.eu/history-augmented-reality-theatre-may-benefit/
http://www.hitl.washington.edu/artoolkit/
http://www.hitl.washington.edu/artoolkit/
https://doi.org/10.3389/fped.2017.00145
https://doi.org/10.1145/1029632.1029669
https://github.com/mayurmadnani/fer
https://doi.org/10.3390/s18020416
https://doi.org/10.1145/3072959.3073596
https://doi.org/10.1145/3072959.3073596
https://doi.org/10.1145/3173574.3173927
https://doi.org/10.1145/1978942.1979437
https://doi.org/10.1145/1978942.1979437
http://arxiv.org/abs/1611.06355
https://doi.org/10.1145/2810052
https://doi.org/10.1109/MCG.2016.56


Body LayARs: A Toolkit for Body-Based Augmented Reality VRST ’20, November 1–4, 2020, Virtual Event, Canada

(Omaha, Nebraska, USA) (ICER ’15). Association for Computing Machinery, New
York, NY, USA, 91–99. https://doi.org/10.1145/2787622.2787712

[42] Douglas A. Reynolds and Richard C. Rose. 1995. Robust Text-Independent Speaker
Identification Using Gaussian Mixture Speaker Models. IEEE Transactions on
Speech and Audio Processing 3, 1 (Jan 1995), 72–83. https://doi.org/10.1109/89.
365379

[43] Rui Sacchetti, Tiago Teixeira, Bruno Barbosa, António Neves, Sandra Soares, and
Isabel Dimas. 2018. Human Body Posture Detection in Context: The Case of
Teaching and Learning Environments. In Proceedings of the Third International
Conference on Advances in Signal, Image and Video Processing (SIGNAL ’18). 79–84.

[44] Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and Wilmot Li. 2019. Interactive
Body-Driven Graphics for Augmented Video Performance. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 622, 12 pages. https:
//doi.org/10.1145/3290605.3300852

[45] Rajinder Sodhi, Hrvoje Benko, and Andrew Wilson. 2012. LightGuide: Projected
Visualizations for Hand Movement Guidance. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI ’12).
ACM, New York, NY, USA, 179–188. https://doi.org/10.1145/2207676.2207702

[46] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101: A
Dataset of 101 Human Actions Classes From Videos in The Wild. Technical Report

CRCV-TR-12-01. Center for Research in Computer Vision, University of Central
Florida.

[47] Flavia Sparacino, Christopher Wren, Glorianna Davenport, and Alex Pentland.
1999. Augmented Performance in Dance and Theater. In International Dance and
Technology 99.

[48] TensorFlow. 2019. Pose Detection in the Browser: PoseNet Model. Retrieved 19-
Sep-2019 from https://github.com/tensorflow/tfjs-models/tree/master/posenet

[49] Robert Xiao, Teng Cao, Ning Guo, Jun Zhuo, Yang Zhang, and Chris Harrison.
2018. LumiWatch: On-Arm Projected Graphics and Touch Input. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, Article 95, 11 pages. https://doi.org/10.1145/3173574.3173669

[50] Q. Xu, S. S. Cheung, and N. Soares. 2015. LittleHelper: An augmented reality glass
application to assist individuals with autism in job interview. In 2015 Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference
(APSIPA). 1276–1279. https://doi.org/10.1109/APSIPA.2015.7415480

[51] Jason Y. Zhang, Panna Felsen, Angjoo Kanazawa, and Jitendra Malik. 2019. Pre-
dicting 3D Human Dynamics from Video. In The IEEE International Conference
on Computer Vision (ICCV).

https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1109/89.365379
https://doi.org/10.1109/89.365379
https://doi.org/10.1145/3290605.3300852
https://doi.org/10.1145/3290605.3300852
https://doi.org/10.1145/2207676.2207702
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://doi.org/10.1145/3173574.3173669
https://doi.org/10.1109/APSIPA.2015.7415480

	Abstract
	1 Introduction
	2 Describing Body-Based AR
	2.1 Recent Advances in Body Tracking
	2.2 Body-Based Output
	2.3 Examples of Existing Body-Based AR
	2.4 Developing Body-Based AR Applications
	2.5 Motivation for Body LayARs

	3 The Body LayARs Toolkit
	3.1 Considerations
	3.2 Overview
	3.3 Project Server and Editor
	3.4 Body LayARs JavaScript API
	3.5 Host Applications
	3.6 Comparison to Other AR Tools

	4 Example Projects
	4.1 Placing Nametags on Recognized People
	4.2 Tracking Student Responses in Classrooms
	4.3 Emotion Annotation
	4.4 Visualizing Self-Tracking Data
	4.5 Sonification

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

